Linguistic Analysis by Computer

Sean A. Fulop
Dept. of Linguistics
University of Chicago

October 24, 2002

We consider what it means to have a grammar for a natural
language, and how the problem of making, or learning one, can be
attacked using a computer.

Recent investigations (e.g. Moortgat 1999, Morrill 1994) have
shown the possibilities for the description of natural language

syntax promised by enriched forms of Lambek’s syntactic calculus
(Lambek 1958).

Any version of Lambek’s calculus in this landscape of logical
systems will be called a type logic in keeping with current practice.




This talk proceeds according to the following;:

e Type-logical grammar as a framework for syntactic description

is briefly summarized.

The syntax-semantics connection between type logic and the
simply typed lambda calculus is outlined, as a generalization of
the Curry-Howard morphism.

We outline a procedure OUTYL for learning type-logical

grammars from sentences plus lambda terms—term-labeled

strings—which works for any type logic meeting certain

conditions.




1 Motivation

There is a long list of grammar formalisms whose weak generating
capacity has been proven suflicient to provide the string set of any

human language. Type-logical grammar is one of these.

We can also provide a set of tree-structured sentences, if that is

desired, and the generating capacity in this regard is also sufficient.

So, it is a fact that there is some type-logical grammar generating
every natural language, under the usual idealized construal of what

that means.

Yet it is very hard to actually design a grammar for a language in
any of these formalisms; as a result, no such grammar has ever
been exhibited.




An automated routine that could design a descriptively adequate
grammar for a natural language would be of considerable value to
linguistic theory, since we could then see what a natural grammar

is really like, and perhaps study the properties of language.

The idea for inputting semantically annotated sentences to a
learner draws in part upon theoretical psycholinguistics; a leading

suggestion in cognitive science has been that humans learn language

using some sort of “semantic bootstrapping” (Pinker 1984).




2 Type-logical grammar

The non-associative Lambek calculus NL serves as a “base logic”
for the kinds of type logical grammars that the present paper
applies to. We present it as a system of inference figure schemata

among type-reduction statements.

This is also known as a Gentzen sequent calculus. A proof in the
system is any combination of instances of the schemata in tree
form, with axiom sequents at the top and the proven sequent at the
bottom.

The logic has only two operators /,\, and formulae (types) are

combined into trees using ‘¢’, rather than the more customary sets.




1 DEFINITION

(Axiom)
A=A A=B T[Al=C
L[(AoB\A) = C

(Cut)
A=A T[A=C
LAl = C

T'eB)= A
I'= A/B

(/ L)
A=B T[Al=C
[[(A/BoA)|=C

(Bol')= A
I'= B\A




A,B,C, ... stand for type formulae, A, I',... for trees of type
formulae that are also called G-terms.

['|A] either means a G-term I' containing an occurrence of type A
somewhere within, or it means a G-term I' in which A has replaced
an occurrence of something else, the identity of which would be

clear from a previous use of the notation I'[}].

The symbol ¢ indicates a binary non-associative combination

(tree-building) operation.




A type-logical grammar is a triple G = (Vg, I, Rg) comprising a

vocabulary Vg of words, a lexical function Io assigning words to
sets of type formulae, and a type logic Rg. The lexicon below leads
to the sentence proof underneath. The words labeling the types in

the proof allow us to keep track of the sentence we are dealing with.

(1) Ig(Susan) = aq

I (sings) = asg\s

Qo Susan = ag  s: [Susan,sings| = s

(2)

(ag: Susan ¢ as\s: sings) = s




3 Grammar discovery from semantic

composition

Consider a model for human language in which a single type logic
based on NL, but perhaps extending its capabilities, is universal,
underlying all languages.

In this event, the fact that languages differ is accounted for by their
having different vocabularies and different lexical assignments.

Thanks to the nature of type logics, the type formulae are
themselves documents of the syntactic behavior that they exhibit
in the language, once the logic they are involved in is known.

Since a type logic for sentence inference can be provided in advance
as a universal language faculty, the language learning problem
comes down to learning the vocabulary and the type formulae
assigned to those items.




The learning data consists of term-labeled strings, i.e. sentences
annotated by typed lambda calculus meaning recipes:

(3)  ((loves®T¥< % Mary®))(John®))®: (John, loves, Mary)

Alternatively, without subterm types, one has:

(4) ((loves(Mary))(John))®: (John, loves, Mary)

The meaning recipes to the left of the colon show the basic
compositional construction of the sentence meaning in terms of
application (and abstraction), and can be used as partial
descriptions of type-logical proofs of the sentence via a generalized

Curry-Howard homomorphism.

The bold-face items are atomic terms representing the meanings of

the corresponding words.




The morphism from semantic terms to syntactic proofs is induced
by defining a mapping 7 from syntactic types to semantic types:

T(c) =c¢

for corresponding primitive types ¢, ¢;

7(A/;B) = 1(B\;A) =1(A) < 7(B)

Then lambda term application is seen to correspond to the
slash-left Gentzen rules, and lambda abstraction corresponds to
slash-right rules. A lambda term can thus be used as an

underspecified proof recipe, called a homomorphic construction.




The broad outline of the discovery procedure, called Optimal
Unification for Type-Logical grammars (OUTL), is as follows:

1. Given a sample D of unsubtyped term-labeled strings, compute
a counterpart sample D’ whose terms are subtyped using

variable primitives in a most general way.

For example, given two term-labeled strings input

(singsMary)®: (Mary, sings)

(singsSusan)®: (Susan, sings)

we provide output

(sings®™ “*Mary*!)®: (Mary, sings)

(sings®™ “?Susan®?)”: (Susan, sings)




2. Next, we compute the set of general form type-logical lexicons
GFTL(D’) which will generate the sample, in each of which
distinct variable primitive types will each occur atomically only
once. This is accomplished by taking the following steps:

(a) For each term-labeled string in the sample, determine all

proofs in the type logic at hand which can be constructed
by using the subtyped lambda term as a proof recipe, and
which are also compatible with the word order that is
evident in the sentence.

Non-deterministically select one proof for each term-labeled
string in the entire sample; a general form lexicon can then
be read off from the types labeling the words. Repeat this
step until all different ways of selecting one proof for each
term-labeled string have been exhausted. This will provide
all general form lexicons that could generate the learning
sample.




Continuing the example, the above data tell us:

(a) (sings®™ **Mary“*)® is a homomorphic construction of a
proof of:

['1: [Mary, sings| = s

b) (sings®~“?Susan®?)® is a homomorphic construction of a
g

proof of:
['s: [Susan, sings] = s

By reading the lambda term like a recipe for proof-building,
the two proofs are derived, respectively:

a1: Mary = a3 s: [Mary,sings| = s

(\L)

Qi : Susan = ag  s: [Susan,sings| = s

(ap: Mary ¢ a\s: sings) = s

(/L)

(ao: Susan ¢ as\s: sings) = s




GFTL thus finds just one general form lexicon that is

consistent with the learning sample:

. Finally, we compute all of the optimal unifications of each of
the lexicons in GFTL(D’).

The notion of an optimal unification of a family of type

formulae comes from Buszkowski and Penn (1990), and is a

substitution (mapping variables to types, standardly) that has

the effect of equating all types that have the same form, and
thus in some sense equates all word senses that are equivalent

as to usage.




The general form lexicon above can be optimally unified, which

results in the following lexicon.

(8)  Mary Q

sings a\s

Susan Q




Another example shows the results of applying the OUTL

procedure to two different samples of four annotated sentences,

which have the same vocabulary. The procedure settles on a

grammar for the same language in each case (the same grammar

too, in fact).

(9) (sings(John))®:

((loves(Mary))(John

((loves(a(man)))(

((sees(John))(a(

(John, sings)

: (John, loves, Mary)

: (Mary, loves, a, man)
(a, man, sees, John)

(10) (sing
((loves(John

Mary, sings)
Mary, loves, John)

A
A

((loves(Mary))( . (a, man, loves, Mary)
A

((sees(a(man John, sees, a, man)




Ic(Mary) = {a1, a2, a9}
I (sings) = a\s
Ig(loves) = {(a2\s)/as, (ar\s)/ag}
Ig(John) ={a3,as}
Ig(a) = {as/as,ar/as}
Ig(man) = {ag, a8}
I (sees) = (aa\s) /a5




These two optimally unify to the same lexicon:

(11)




4 Extensions and ramifications

The above algorithm extends to enrichments of the simple
syntactic calculus, which extend the logic with structural rules
and unary operators controlling access to them, a la Linear
Logic.

The logics in a large class of such systems could plausibly

generate natural languages.

The lexical type systems of natural languages could then be
learned in the above fashion.

The optimally unified grammars of this kind are learnable in
the limit according to the Gold (1967) criterion.




e The term-labeled languages generated by such grammars are
syntactically consistent, which means that word senses having
identical usages automatically have identical syntactic
categories, and conversely words having distinct usages
automatically have different syntactic categories.

The above algorithm is proven to always terminate on any
finite sample of term-labeled sentences.

The algorithm is so inefficient, it cannot be run in reasonable

time on any sample requiring an enriched logic, so more work

on this is sorely needed.




References

Buszkowski, Wojciech, and Gerald Penn. 1990. Categorial grammars
determined from linguistic data by unification. Studia Logica 49:431—
454.

Gold, E. M. 1967. Language identification in the limit. Information and
Control 10:447-474.

Grimshaw, Jane. 1979. Complement selection and the lexicon. Linguistic
Inquiry 10:279-326.

Grimshaw, Jane. 1981. Form, function, and the language acquisition
device. In C. L. Baker and J. J. McCarthy (Eds.), The Logical Problem

of Language Acquisition. Cambridge, MA: MIT Press.

Lambek, Joachim. 1958. The mathematics of sentence structure. Amer-
wcan Mathematical Monthly 65:154-170.

21-1



Moortgat, Michael. 1999. Meaningful patterns. In Jelle Gerbrandy,
Maarten Marx, Maarten de Rijke, and Yde Venema (Eds.), JFAK: Es-
says dedicated to Johan van Benthem on the occasion of his 50th birthday.
Institute for Logic, Language, and Computation, University of Amster-
dam. Available on CD-ROM at http://turing.wins.uva.nl.

Morrill, Glyn V. 1994. Type Logical Grammar: Categorial Logic of Signs.
Dordrecht: Kluwer.

Pinker, Steven. 1984. Language Learnability and Language Development.
Cambridge, MA: Harvard University Press.

21-2



