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One-dimensional Wave Models

Solitary waves occur in wave propagation systems
having a weak nonlinearity and dispersion, such as
Korteweg and de Vries :

Ut + ug + vuy + Uggr = 0 (1)

and Peregrine & Benjamin, Bona & Mahoney
equation

Ut + Uz + Uy — Uggt = 0 (2)

obtained from KdV by using u; ~ —uy.



Mathematical Structure

KdV is a completely integrable Hamiltonian system
(whereas PBBM is not). Solitary wave interactions
are particle-like for KdV (solitons), not for PBBM .
However, Camassa and Holm equation does have the

soliton property:

ut + Uz + UUg — Uyt (3)

Here, o is a positive constant indicating the amount
of dispersion; previously we just had a = 1.

From modeling perspective, terms on right-hand side
of (3) are even smaller than nonlinear and (linear)
dispersive terms on left-hand side.



The CH equation (3) has a suggestive form
vt + ugr + uvge + 2vugy = 0

02 \—1 (4)
u = (1 — a@> v
o -
Means u solves (1 — aW)u = v wWith v — 0 at oc.

CH equation (3/4) is a nonlinear perturbation of
PBBM and so also of KdV and can be viewed as a
nonlinear advection equation for a variable v which
has a simple relation to the advection velocity .

(4) forms the template for a three-dimensional fluid
flow model including dispersion.



3-D dispersive fluid models

The 3-D analog of the Camassa-Holm equation is

vi —vAu—+ (curlv) x u4+Vp=0 (5)
where (1 —aA)u=v,a>0and V- u=0.

a =0 implies u =v; (5) becomes Navier-Stokes

u; — vAu—+ (curlu) xu+Vp=20 (6)

where pressure 5 =p — u-u.

Nonlinear term (curlu) x u differs from usual one
u - Vu via this transformation involving a re-definition
of the “pressure” variable.



a model history

The a-model equation (5) first appeared as a model
of Rivlin and Ericksen: a continuum of material with
velocity u described by

d
—u=V- T, 4
.y (7)
where T = T'(u) is the stress and we define
Qwi=wtu v (8)
— W .= w . w
dt g

for any w (either scalar, vector or tensor valued).



Rivlin-Ericksen grade n model

Assume that the stress tensor T has the form (for
the grade n model)

T = _131+Sn(a17327"°7an) (9)

where p = pressure and a; are Rivlin-Ericksen tensors
defined recursively by (recall the notation (8))

ai;=L+4+L" ., L=Vu,

d
= &y-1taal+ L'a; 1,

S"=3>1"_1S; and each §; is a polynomial in the a;:

aj

2
S1 =mna; , So =ajap + aray, etc.



Grade 2 Model

d
a1=Vu—|—VuT, agz&a1+a1L—|—LTa1,

T = T? = —5l + nay + ayap + apa3, (10)

where the parameters n, «; are material constants.
Physical arguments show that

n>0 , a1 >0 and a1 +ap,=0.

Setting a = a1 (and as = —a) and substituting (10)
into (7) vyields the dispersive fluid equations (5).



Geometry of maps

When v =0 in (5), we get a grade-two variant of
the Euler equations. Consider the class V° of vector
fields u satisfying (a) u e H%(2) (b) V- u= 0 and
(c) u-n=0 on 92. Given u(-,t) € V3, consider the
flow fyu = fu(x,t) generated by u, that is,

d

&fu(x, t) = u(fu(x,?),1) (11)
where fu(x,0) = x for all x € 2. For each ¢,
fu(-,t) € Do = the space of volume preserving
diffeomorphisms of 2. Thus the map t — fu(-,¢t) is a

curve in Dq.



Geometry of Dq

Do has a natural group structure: composition. The
tangent space Tp,(Z) to D at Z can be identified
with the space V?® of divergence-free vector fields.
Putting an inner-product on V® puts a metric on the
tangent space to Dg at Z. For example,

< T,0 >2= /QT(X) -o(x) dx (12)
<70 > = /Q (%) - o(x) 4+ aVr(x) : Vo(x)dx. (13)

Using the group structure allows us to translate this

metric to the entire tangent bundle invariantly.
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Geodesics come from solutions

Remarkably u solves the Euler equations if and only
if the curve with
metric (12) given by the L? inner-product on V.

Even more remarkably, u solves a-model (5) if and
only if the curve with
metric (13) given by the H} inner-product on V*.

This structural property of the a-model (5) exhibits
a key property of a good model and makes it clear
that it does not appear by chance.
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Turbulence models

It is of interest to study statistical properties of
ensembles of solutions of the Navier-Stokes
equations (meaning (6) together with V.- u=0). If
we let u denote such an ensemble average of
solutions, then at least one such averaged equation
takes the form (7). Given the general considerations
leading to (9), it is not surprising that appropriate
models would lead ultimately to (5). A slightly
modified model has been shown in to provide an
accurate model of turbulence experiments done in a
channel.
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Lubrication model solutions

Flow in a long channel whose horizontal velocity has
the form shown in the figures.

The shape depends on the parameter r := t' R where
R is the Reynolds number and ¢ is the thickness of

the channel.

When a > 0 the effect of R is diminished.
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plots of W for r between -8 and 3 with increments of 2 for negative r and 1 for positive r
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Stability of the grade-two model

Taking the curl of (5) and introducing the variable

z = curlv = curl (u — aAu) (14)

This leads to a transport equation for z:

azi +vz+ ou-Vz —az-Vu =vcurlu (15)
The steady versions of (5) and (15) in 2-D read
—vAu—+ z(up —u1) + Vp =0
V- u=0 (16)
vz+ au-Vz =vcurlu

where we now u denotes a 2-vector valued function
and curlu = U1 2 — U2 1-
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Transport equation

Let us write the general form of the transport
equation in (16), after dividing by v, as

z4+Wu-Vz = f. (17)

If all we know is that u € H1, then f € L? is the best
we can hope for in (16). But then we could not
hope for more than z € L? either, as (17) provides no
smoothing. And for z € L? (and u € H1), the term
u-Vz is a concern.

Certainly, u- Vz will not in general be in L2 for
unrelated z and u.
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Transport equation solution
Miraculously, it is possible to show that (provided
u-n =0 on 0L2), the problem (16), i.e.,

z+Wu-Vz=f

has a unique solution z € L? for any f € L? .

In fact, you can say more, in that z lies in the space
Xy = {weL2 : u-V'wELQ} (18)

and |12ll 2 < [1£ll 2.
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Conclusions

We have examined a model for dispersive flow in two
and three dimensions. We described several ways in
which this model can be derived.

We have shown that stability can be established in
the 2-D case. Numerical schemes for approximating
the equations and their corresponding stability and
convergence properties have been proved.

Lubrication models indicate behavior of laminar
flows.
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