
Cover Page

U.S. Department of Energy Office of Science

Scientific Discovery through Advanced Computation Solicitation 01-06 and LAB01-06

National Collaboratories and High Performance Networks
Security and Policy for Group Collaboration

A DOE SciDAC Collaboratory Middleware Project

For the period May 1, 2001 – September 31, 2006

Principal Investigator (Laboratory)

Steven Tuecke

Mathematics and Computer Science Division, Argonne National Laboratory

Argonne, IL 60439

Tel: 630 252 8711

Fax: 630 252 5986

Email: tuecke@mcs.anl.gov
Principal Investigator (University)

Carl Kesselman

Information Sciences Institute, University of Southern California

4676 Admiralty Way, Suite 1001

Marina del Rey, CA 90292-6695

Tel: (310) 448-9338

Fax: (310) 823 6714

Email: carl@isi.edu

Other Senior Personnel
	Ian Foster
	Mathematics & Computer Science Division, Argonne National Laboratory

	John Bresnahan
	Mathematics & Computer Science Division, Argonne National Laboratory

	Laura Pearlman
	Information Sciences Institute, University of Southern California

	Von Welch
	Argonne National Laboratory/U.Chicago Computation Institute

	Doug Engert

	Electronics & Component Technologies Div., Argonne Natl Laboratory

	Miron Livny
	Dept of Computer Science, University of Wisconsin Madison

Table of Contents

iCover Page

iiiAbstract

A–1A.
Narrative

A–1A.1.
Background and Significance

A–1A.1.a.
The Problem: Enabling Collaborative Work

A–2A.1.b.
Current State of Knowledge in Security and Policy Technologies for Group Collaboration

A–3A.1.c.
Our Proposal: A New Group Security and Policy Infrastructure

A–4A.1.d.
Contributions

A–5A.2.
Preliminary Studies

A–5A.2.a.
Scalable Authentication: The Grid Security Infrastructure

A–6A.2.b.
Investigations of Policy

A–7A.3.
Research Design and Methods

A–7A.3.a.
Roles, Privileges, and Policy

A–7A.3.a.1.
Community Authorization Service

A–10A.3.a.2.
Restricted Delegation

A–10A.3.a.3.
Delegation Tracing

A–10A.3.a.4.
Policy Languages

A–11A.3.a.5.
Policy Evaluation API & SDK

A–11A.3.a.6.
Accounting

A–11A.3.a.7.
Policy-Based Resource Selection

A–12A.3.b.
Authentication Procedures to Support Dynamic Collaboration Membership

A–13A.3.b.1.
Online Certificate Authority

A–14A.3.b.2.
Online Credential Repository

A–14A.3.b.3.
Support for Multiple User Credentials

A–14A.3.b.4.
Multi-Factor Authentication

A–14A.3.c.
Managing Dynamic Resource Sets

A–15A.3.c.1.
Subordinate Certificate Authorities for Domains

A–15A.3.c.2.
Integration with Local Security Solutions

A–15A.3.d.
Integration of Security Into Collaborative Applications

A–16A.3.d.1.
Extensions to Standard APIs

A–16A.3.d.2.
Tracking Standards

A–16A.3.d.3.
Independent Data Unit Support

A–16A.3.d.4.
Flexible Application of Message Protection

A–17A.3.d.5.
Integration Into Development Frameworks

A–17A.3.d.6.
Improved Error Reporting and Logging

A–17A.3.e.
Tasks and Milestones

A–19A.3.f.
Deliverables

A–20A.3.g.
Connections, Technology Transfer, Application

A–20A.3.g.1.
SciDAC and Other DOE Projects

A–21A.3.g.2.
Standards Bodies and Open Source Consortia

A–21A.3.h.
Evaluation Criteria

A–22A.4.
Subcontract or Consortium Arrangements

B–1B.
Literature Cited

C–1C.
Budget and Budget Explanation

D–1D.
Other Support of Investigators

E–1E.
Biographical Sketches

F–1F.
Description of Facilities and Resources

Abstract

We propose a Collaboratory Middleware research project aimed at providing the fundamental security and policy infrastructure required to support the creation and operation of distributed, computationally enabled collaborations. This infrastructure will exploit innovative new techniques to address challenging issues of scale, dynamics, distribution, and role. To reduce greatly the cost of adding new members to a collaboration, we will develop and evaluate new techniques for creating and managing credentials based on public key certificates, including support for on line certificate generation, online certificate repositories, and support for multiple certificate authorities. To facilitate the integration of new resources into a collaboration, we will improve significantly the integration of local security environments. To make it easy to create and change the role and associated privileges of both resources and participants of collaboration, we will develop community wide authorization services that provide distributed, scalable means for specifying policy. These services will make it possible for the delegation of capability from the community to a specific user, class of user or resource. Finally, we will instantiate our research results into a framework that makes it useable to a wide range of collaborative tools. The widespread adoption of our Grid Security Infrastructure and Globus Toolkit technology provides a natural dissemination and technology transfer vehicle for our results.
A. Narrative

A.1. Background and Significance

We first define the problem that we wish to solve, and explain why it is important; review the current state of knowledge and technology in this area; and finally indicate the specific goals of the proposed research.

A.1.a. The Problem: Enabling Collaborative Work
Today, scientific advances are rarely the result of an individual toiling in isolation, but are typically the result of a collaborative, team effort. We can find many examples of such collaborative teams in areas of science of interest to the Department of Energy:

· Particle physics experiments, such as BABAR, CMS, and ATLAS are designed and conducted by large, multinational teams. Individual members of the team might be responsible for the design of the detector, various pieces of software for on-line data collection, data preprocessing and event detection. Team members use shared data sets for analysis and may use community wide compute resources for data analysis.

· Scientists studying global change perform extensive post-simulation analysis in order to attempt to understand the results of a simulation. While a small team may develop the simulation code, separate groups may configure and run the code to generate data about a specific phenomenon. At this point, the simulation data becomes a community resource that has a variety of uses.

· New particle accelerators are being considered that would use Wakefield forces excited in a charged plasma gas to accelerate the beam on plasma, hence promising to provide accelerators with energy levels far exceeding those of current accelerator technologies. These new accelerators are being designed by collaborative teams that bring together theoretical physicists, computational scientists and experimentalists. During an experiment, using on the fly data analysis of experimental data coupled with on-demand simulation, the team must interact to determine if the experiment is proceeding correctly, and to understand the results in order to design the next set of experiments to be performed.

These examples illustrate four essential properties of collaborative work:

· Geographical and Organizational Distribution. Participants in a collaborative activity are distributed, both geographically and organizationally, as are the tools and resources used to perform the work of the collaboration (e.g., computers, data sets, storage devices, simulation programs).

· Large and Dynamic Scale. Collaborations can scale in size from a few individuals, as is the case with the accelerator design collaboration, to literally hundreds or thousands of participants, which is the case of many high-energy physics experiments. Furthermore, the size of a collaboration is not static, but frequently varies over the lifetime of the collaborative task. Participants may join or leave, and resources may be added or removed

· Diverse Roles. Collaborations may span areas of expertise, with members filling different roles within the collaboration. The role of a member may be fixed for the duration of the collaboration, or it may change during its lifetime. For example, in the case of climate modeling there are distinct roles of the simulation writer, the simulation runner, and the consumer of simulation data.

· Community resources. The work of the team is enabled by providing team members with access to a variety of resources including computers, storage systems, datasets, applications, and tools. Thus in a real sense, a collaboration is not just the group of individuals participating in the activity, but the resources that can be used by members of the collaboration to conduct their work.

Collaborative work of the type described requires that two basic infrastructure elements be in place:

· One must have mechanisms for establishing and maintaining the structure of the collaboration. This includes means for identifying who is a member of the collaboration, what role they play, and what types of activities they are entitled to perform and what community resources are available to the collaboration. All of these factors may vary over time.

· One must have available the means to perform the work of the collaboration: e.g., mechanisms for annotating and cataloging information so that it may be understood by members of the collaboration, electronic notebooks for sharing what processes had been followed, interfaces that make computing resources available for use, methods for discovering and initiating simulation codes, etc

Most previous work on collaboration tools has focused on the second element to the exclusion of the first. Issues of structure are generally handled in either a simplistic way or not at all. For example, both the Diesel Combustion Collaboratory and Materials Microcharacterization Collaboratory focused on mechanisms and basically ignored issues relating to the evolution of membership and roles. Yet, as we explain below, these issues must be addressed in a comprehensive manner before collaborative environments can be used to solve problems of real consequence.

At the center of this problem of structure is determining the identity of both participants and resources in a collaboration and, based on this identity, determining the rights of the participant and resource. These operations fall under the general heading of security technologies: identity and role being implemented via authentication mechanisms, and rights by authorization mechanisms [38]. Yet while many basic mechanisms for authentication and authorization have been defined, the issues of distribution, dynamics and scale discussed above complicate their application to collaborative environments, posing major research challenges that must be addressed.

In this proposal, we focus on this fundamental question of how to structure collaborations. Our goal is to develop scalable, secure, and usable methods and tools for defining and maintaining membership, rights, and roles in group collaborations. Our concern is not with any specific collaboration or collaboratory but rather with 1) understanding the basic mechanisms required to structure a collaboration, 2) developing infrastructure elements in the form of middleware services and tools that implement the mechanisms, and 3) demonstrating the validity of these methods within the context of a number of demonstration collaboration environments. We tackle these questions from the perspective of several year’s extensive work with security technologies that have found a large user community and been adopted widely, the Grid Security Infrastructure (GSI). GSI also provides us with a natural deployment and technology transfer vehicle for our work.

Note 1: The fundamental nature of the issues to be addressed here, and the broad and continuing demand that we see from application and tool development groups, leads us to propose this project as a five-year project.

Note 2: The effort proposed here is not supported under any other funding from DOE or elsewhere. The DARPA funding that supported initial development of GSI terminates in FY2001; the DOE NGI funding that supported initial policy work has terminated; and the DOE Collaboratories work funding (“Collaboratory Infrastructure Framework”) that supported some initial work on DOE applications at ANL is being recompeted under this call.

A.1.b. Current State of Knowledge in Security and Policy Technologies for Group Collaboration

We review the “best practice” technologies available to address security and policy issues in group collaborations, and use a critique of these technologies to define the security and policy challenges we address in this proposal.

The problems of authentication and authorization in distributed systems have been extensively studied [6, 26, 28, 39]. Until recently, the situation was simple if inadequate: most people used simple plaintext passwords for authentication to remote sites, while more secure sites used Kerberos [40]. Subsequently, technologies based on public key mechanisms, such as Secure Shell (ssh), largely replaced the use of plaintext passwords. However, while these technologies are quite satisfactory for remote login to a single remote site, they do not address fundamental requirements of collaboratories. For example, Kerberos is difficult to deploy on all of the resources that may participate in a large collaboration. But even if Kerberos were ubiquitously deployed, it is further hindered by its requirement for cross-realm trust agreements amongst all sites participating in the collaboration, thus making it unsuitable for use by programs that use resources at multiple sites in a coordinated fashion without repeated authentication. Ssh is intended just for starting remote shells, and as a result lacks an API that can be used to augment various collaborative applications with the required security. Further, ssh's single sign-on capabilities are limited, again due to its intended purpose.

More recently, there have been significant advances in security technologies for distributed environments such as those required by the types of collaborations that we are concerned with. Many of these advances have occurred within the context of an emerging computing environment that has come to be known as the Grid [13]. The Grid concept is about coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations [16]. The sharing that we are concerned with is not primarily file exchange but rather direct access to computers, software, data, and other resources, as is required by a range of collaborative problem-solving and resource-brokering strategies emerging in industry, science, and engineering. This sharing is, necessarily, highly controlled, with resource providers and consumers defining clearly and carefully just what is shared, who is allowed to share, and the conditions under which sharing occurs. The resource sharing mechanisms provided by the Grid are fundamental enabling technology for collaborative work environments. Grid security technologies include the widely used Grid Security Infrastructure (GSI, discussed in Section A.2.a below) as well as systems such as CRISIS [5] and Legion [47].

The GSI system focuses primarily on authentication and message protection [11] mechanisms, defining single sign-on algorithms and protocols, cross-domain authentication protocols, and delegation mechanisms [18, 19, 22, 27] for creating temporary credentials for users and for processes executing on a user’s behalf. In brief, a GSI user first obtains (and must subsequently maintain secure) a public key infrastructure (PKI) credential from a trusted entity called a Certificate Authority (CA). The user can then:

· Use their PKI credential to authenticate themselves once, after which they can access resources at multiple sites without repeated authentication. This single sign on capability is critical to Collaboratory applications in which a single interaction may involve the coordinated use of resources at many locations.

· Create temporary proxy credentials that can be passed to remote sites allowing operations to be performed at those remote sites on their behalf [24, 44]. This delegation capability is also critical to Collaboratory applications, as it allows a program to operate remotely without compromising the user’s permanent PKI credential.

Furthermore, individual sites can control what credentials are acceptable and what Grid users are allowed to use local resources, a capability that is similarly critical to the broad deployment of Collaboratories and Grids:

· What credentials are acceptable: a policy file at each site (or resource) indicates which CAs the site or resource is prepared to trust as a valid source of credentials. E.g., we might accept credentials issued by the ESnet CA, but not Podunk High School.

· Who can do what: a map file at each site (or resource) indicates which users are allowed to access the resource(s), and maps each user to their local identity as known to the resource. E.g., a computer center might allow only “approved” users to access resources.

Another important technology, the Akenti system [25, 42], provides a complementary set of capabilities concerned with authorization. Akenti identifies a set of stakeholders with a resource, where each stakeholder is allowed to place restrictions on who and how the resource can be used. These restrictions are specified in terms of what attributes a user must possess in order to perform specific requests. If all of the stakeholders approve a request, then the request may be performed. Akenti makes extensive use of PKI certificates for encoding both user attributes as well as usage conditions. Akenti has been used by the Diesel Combustion Collaboratory to control access to collaboratory resources, such as simulation codes and data provided by web servers. We discuss Akenti further in Section A.3.a.1 below.

A.1.c. Our Proposal: A New Group Security and Policy Infrastructure

GSI’s combination of single sign on, delegation, and local control over policy represents a significant step forward relative to other technologies: once a credential is obtained and policy and map files set up, a user can use distributed resources in extremely flexible ways. However, the unique characteristics of group collaboration introduce additional demands in four areas, which we now review in general terms, along with our proposed approach to addressing them; technical details are provided in Section A.3.

It must be straightforward to change collaboration membership. Membership tends to be highly dynamic in scientific collaborations. For example, a researcher might want to induct a temporary visitor as an “authorized” user of a remote resource. Another collaboration member might want to enable her class to act as “observers” of an experiment. Yet in GSI as defined above, “membership” is nowhere explicitly defined; instead, it is implicit in the policy and map files at each site, which are not easy to change. Furthermore, the (typically heavyweight) operation of obtaining a PKI credential represents a significant obstacle to rapid introduction of new members. These and other issues combine to make management of membership and roles unacceptably unwieldy in today’s security solutions.

Building on GSI mechanisms, we will pioneer new techniques that reduce dramatically the costs associated with group membership operations, so that:

· The cost of acquiring credentials, and the cost of managing credentials once acquired, are reduced dramatically. (The specific mechanisms that we will develop with this goal in mind include: Online credential generation, online credential repositories, support for multiple CAs.)

· Authority for managing group membership can easily be re-assigned, so that for example a resource site can delegate this authority to an entity that implements group policies. (Group membership service.)

It must be straightforward to add new resources to a collaboration. As the membership and goals of a collaboration change, so do the associated resources. For example, a new user may integrate new resources. A new project may require that certain datasets be made momentarily available to an existing collaboration. The issues here are different from those associated with membership, because authentication and authorization mechanisms at a resource site must interface with local security solutions.

Building on GSI mechanisms, we will develop new techniques that reduce dramatically the costs associated with incorporating new resources into collaborations, so that:

· The cost of acquiring credentials for resources (“host certificates”) are reduced dramatically. (Subordinate Certificate Authorities for Domains.)

· We support integration with a wide variety of local security solutions, including AFS.

It must be straightforward to create and change the role and associated privileges of both resources and participants. Not only membership but also roles tend to change over time. For example, a new user is progressively granted additional privileges as they gain experience; another user “publishes” a private file, making it available to some of her colleagues. Again, we face the difficulty that roles are nowhere explicit in the GSI environment, but are instead implicit in the set of policy and map files maintained by collaboration participants. In addition, GSI’s delegation mechanisms do not allow a user to limit what “role” he wants a program to play.

Building again on GSI mechanisms, we will pioneer new techniques that reduce dramatically the complexity of maintaining and modifying roles, and increase substantially the range of roles that can be expressed, so that:

· Resource sites can delegate to others the authority to define roles and group membership, saying, for example, “I’ll trust anyone your collaboration says is ok.” (Community authorization services, and associated mechanisms and tools)

· Users can exert tight control over what actions a process they create is allowed to perform at remote locations. (Restricted delegation, and associated mechanisms and tools.)

Security services for structuring a collaboration must be integrated into the overall workflow of the collaboration. Security technologies have a reputation for being complex and opaque, and developers of collaboration software are often reluctant to adopt them for this reason—or, alternatively, use them incorrectly in ways that compromise security. It is hence critical that research advances and security solutions such as those listed above be instantiated into a framework that makes them easily useable within a wide range of collaborative tools.

Building again on GSI mechanisms, we will improve the security tools that developers have at their disposal, so that:

· They can use high quality, feature rich, standards based, security APIs. (Track and extend standards, Independent Data Unit support, flexible application of message protection, and improved error reporting and logging.)

· Security is automatically, and transparently enabled in the high level development tools that are often used. (Integration into development frameworks.)

A.1.d. Contributions

We plan four distinct classes of contributions from the proposed work:

1. Technical innovations. We will advance knowledge in security and policy technologies via the definition and evaluation of new approaches to authentication, PKI management, authorization, policy definition, policy enforcement, and other key technical problems.

2. High-quality software. We will incorporate both our new techniques and “best of breed” techniques from other sources into high-quality software toolkits and libraries. We will leverage our leadership position in Grid security software to achieve wide dissemination and uptake of this software.

3. Innovative application concepts. We will work with DOE application groups to apply our security technologies in new and challenging ways, hence both contributing to the development of secure, workable DOE Collaboratory applications and obtaining guidance on our technology R&D directions.

4. Standards. We will continue to work actively with the GGF and IETF to transition new security ideas into standards wherever possible, and with industry to achieve adoption of those standards in products.

We believe that this four-pronged approach will allow us to achieve a substantial and sustained impact on the practice of security and policy, and the evolution of Collaboratory architectures. As illustrated in Figure 1, we see this project making central contributions to an emerging consensus-based Grid Architecture [16] and providing essential services to a range of important DOE application projects.

[image: image1.wmf]Fabric

: Physical resources

Connectivity

: Communication, authentication

Resource

: Access to individual resources

Collective

: Coordination of multiple resources

Application

: Discipline

-

specific frameworks

GriPhyN:

Virtual data

PPDG:

Physics

ESG:

Climate

Core Grid Services:

Globus Toolkit, Condor, etc.

High

-

Perf

Data Grid

Toolkit

Fusion

Collab

DOE

Science

Grid:

Production

services,

user support

…

Security &

Policy for

Group

Collab

ESnet, DOE Computers, Storage systems, etc.

Figure 1: Grid architecture (on the left) and the role of the Security and Policy for Group Collaboration project and its relationships with other efforts (on the right). Shaded boxes represent complementary proposals submitted to the SciDAC program.

A.2. Preliminary Studies

During the past three years, we have conducted preliminary studies focused on the creation, deployment, application, and evaluation of usable PKI-based authentication and authorization technologies, and on investigations of policy mechanisms.

A.2.a. Scalable Authentication: The Grid Security Infrastructure

Over the past several years, Argonne National Laboratory (ANL) and the University of Southern California (USC) have pioneered a new technology that has proved tremendously powerful, useful, and influential. Our Globus Toolkit [12] provides key Grid technologies that have been adopted in such projects as the DOE-funded Particle Physics Data Grid (www.ppdg.net), Earth System Grid, and MPICH-G2 [10] efforts; the DOE ASCI DISCOM project [4]; the European Union Data Grid project; and the NSF National Technology Grid, Grid Physics Network (www.griphyn.org), Grid Application Development Software, and Network for Earthquake Engineering Simulation (www.neesgrid.org) projects, as well as many smaller-scale tool development efforts.

While the Globus Toolkit provides numerous important capabilities (e.g., remote access to computation, data movement, directory services, resource brokering, co-allocation, quality of service), the underpinning to all of these capabilities is a sophisticated security infrastructure. The Globus Toolkit’s public key infrastructure (PKI)-based Grid Security Infrastructure (GSI) [8, 15, 43] has emerged as an essential middleware component that has been integrated into many tools. GSI shares with SSH and Kerberos the distinction of being a security solution that has passed security review and been deployed at many sites. As we explained above, GSI is characterized by its support for single sign-on, delegation, and local control of site policies.

Our several years of experience with development, deployment, and application of GSI have taught us much about what is needed in a practical security solution for collaboratory applications. In particular we have learned the importance of:

· Simple, standards-based security solutions that are easily understood and reviewed by security personnel. Our success here is evidenced by the wide acceptance that we have gained for GSI technologies, at laboratories around the world.

· Simple, standards-based interfaces and tools to facilitate integration of security into tools and applications. Here we have produced GSS-API [30] interfaces and various “helper” functions, as well as our security-enabled GlobusIO library. Our success here is evidenced by the wide range of GSI-enabled systems, ranging from FTP and SSH servers to Condor and Message Passing Interface implementations.

· Working closely with application projects to understand their requirements. Our security solutions are in daily use by diverse application communities, and this experience motivates many of the new ideas to be developed in this project.

· Standardizing new features in order to gain broad acceptance. The single sign-on and delegation capabilities of GSI are based on X.509 Impersonation Certificates and the TLS Delegation Protocol, both of which are being standardized within the Global Grid Forum and the Internet Engineering Task Force by PI Tuecke and other senior personnel of this proposal.

GSI can be viewed as an experiment in Grid security. It has clearly been tremendously successful. However, as discussed above, the GSI focuses primarily on user/resource and process/process interactions. While this is a necessary prerequisite, it falls short, as explained above, when we turn to group collaboration. The base of understanding and technology developed up to now provides us with a tremendous opportunity that we can exploit with a focused effort.

A.2.b. Investigations of Policy

Within the context of DOE NGI projects “Diplomat: Policy-Based Resource Management for Next-Generation Internet Applications” and “Earth System Grid”, we have conducted three prototyping activities in order to gain an understanding issues of policy specification and enforcement in distributed environments.

In the first of these activities, we investigated how one entity can delegate a subset of its rights to another entity in a general way. Such restricted delegation is important in collaborative environments as it provides a mechanism to deal with the dynamic membership of a collaboration as rights can be delegated to new members as they are added to the collaboration. In our prototype, we used Condor’s ClassAds [33] as a restriction policy language, and the Matchmaker as a policy evaluation engine. We augmented GSI’s X.509 proxy certificates to carry restriction policy represented as a classified ad (ClassAd), which is essentially a set of attribute/value pairs. For example, we might create a certificate with a restriction that could only be used to start or monitor a job on a particular host by specifying a host attribute. We then augmented Globus resource management services to check the policy carried by the certificate prior to filling a resource management request. By using the Matchmaker library included as part of Condor, the resource was able to ensure that the restrictions specified in the certificate matched the attributes defined by the resource. We note that this prototype differs from Akenti in that the delegated proxy certificate carries the policy being enforced, not the resource.
An important question that arose from this work is that of how to name the points at which policy is to be evaluated. In order to express a restriction policy, one must be able to name the policy evaluation points at which the policy will apply. This is a non-trivial problem, as it effectively requires a globally unique naming scheme, with a priori naming of dynamic policy evaluation points. We have developed initial ideas on this topic, which we will expand in this project.

A second prototyping project, motivated by the preceding study, explored the question of how to interface to policy mechanisms. This is germane due to our requirement for integration of security services into collaborative environments. Our preliminary work in this area has focused on the design and prototype implementation of the Generic Authorization and Access Control API (GAA) [36, 37]. Our implementation of GAA enables a range of different policy languages and engines to be plugged into the generic framework and has been designed so as to interface with the authentication capabilities provided by the GSI. The GAA is currently being pursued as an experimental standard within the IETF.

The final aspect of our previous work addresses issues of global policy specification. We have designed a Community Authorization Service (CAS) that allows a user to request an operation be performed on behalf of a community. This service is based on the concept of capabilities, and on resource providers delegating to communities the authority to define their own membership and community access control policies. A CAS server for each community delegates rights to a requestor based on the request and the requestors role within the community. This work is still quite preliminary and is currently only being used to address issues of file access control. However, we believe that the combination of CAS with restricted delegation and standard interfaces to policy engines provides a solution that addresses significant aspects of the specified requirements for collaborative environment.

A.3. Research Design and Methods

In section A.1.c, we introduced four fundamental issues that must be addressed by a security and policy infrastructure to meet the requirements of collaborative applications. We now provide detailed technical discussion of what we will do to address each of these issues, introducing the solutions we propose to research and develop under this effort to meet these challenges, and providing details about these proposed solutions. We also describe our specific tasks, milestones, and deliverables during the life of this project.

A.3.a. Roles, Privileges, and Policy

We talk first about the third of the issues raised above, namely enabling the creation and changing of roles and associated privileges of both resources and participants. Collaborative applications require support for managing or evaluating the authorization policies of the collaboration. Specific requirements include:

1) Support for policies based on identities, roles, and group membership.

2) Scalability to support collaborations with thousands of geographically and organizationally dispersed users and resources, and with billions of objects to be protected.

3) Applicability in a unified fashion to diverse types of resources, including computers, storage, networks, and scientific instruments.

4) Fine grained control over delegation of authorization rights. A collaboration member may have many processes or agents running on their behalf throughout the collaboration. In order to protect collaboration users and resources from accidental or malicious misuse of these delegated privileges, techniques are required for restricting the delegated privileges.

Based on our previous experience with GSI, policy, and a simple CAS, under this research project we will design and implement a policy management solution for collaborative applications. This solution will include new components, along with extensions to GSI, including:

1) A generalized Community Authorization Service (CAS), which is able to handle diverse resource types, manage complex policies describing access to, and use of, a collaboration’s resources, and scale to large collaborations.

2) Restricted delegation extensions to GSI, to enable the fine-grained delegation required by the generalized CAS.

3) Delegation tracing extensions to GSI, to enable further logging and control over the use of delegated credentials.

4) Implement and compare multiple policy languages, for expressing policies required by collaborations.

5) Design and implement a policy evaluation API that can be used by developers of tools and applications to add policy evaluation capabilities to their programs, for example for authorization.

6) Design and implement tools for distributing and managing accounting information, and allow this accounting information to be factored into the policies of a collaboration.

7) Since users of a collaboration may have choices between use of different resources with different policies, policy based resource selection techniques and tools will be developed to enable decisions to be made about which are the "best" resources to use.

Together, these new capabilities will provide a sophisticated yet practical toolkit for managing roles, privilege, and policy in collaboratory settings. We provide additional details on each of these topics in the following.

A.3.a.1. Community Authorization Service

Consider the following situation: a collection of resource sites each decides to make some amount of storage (or bandwidth or computing) available to a high energy physics consortium. Where should decisions be made concerning who in the consortium gets to use these resources? It makes no sense for such fine-grained authorization decisions to be made by the resource owners: they may know nothing about consortium’s policies or even membership. Instead, the resource owner needs to be able to delegate authority for managing the resources that it has made available to the community to a “community representative.” This third party can then dole out subsets of the allocated resources to community members, based on community specific policies. These policies might determine, for example, how much of a resource can be used by different users. Or, in the case of a disk resource, policies might govern who can write and read the disk.

We believe that flexible and secure mechanisms of this sort can be built via relatively simple extensions to our Community Authorization Service (CAS). First proposed [35], the basic idea is that the CAS manages the policies that govern access to a collaboration’s resources, granting users capabilities conforming to these policies, which users can then present to obtain access to resources. A resource owner delegates authority by agreeing to accept these capabilities. GSI authentication and delegation extensions, as described below, are also required to enable the CAS to grant fine-grained access to community users.

A CAS operates as follows:

1) The CAS has its own GSI Community Identity Certificate (CIC), which is a normal X.509 identity certificate signed by a CA that uniquely identifies that CAS to the users and resources. A resource grants access to a community by creating a local account to which the CIC maps. For example, to grant storage to a community, the storage resource administrator would configure the resource with a local account with permission to access the desired local storage, perhaps using quotas to constrain the size of the block, and then maps the CIC to that local account. The resource administrator then registers this account with CAS.

2) Before a community user is able to gain access to the resource, that user must register with CAS. Registration involves supplying CAS with the user's credentials, and proving to a CAS administrator that the user should be part of the community. (Alternatively, a CAS could be configured to refer to a separate group membership server—perhaps an Akenti server—for this purpose.)

3) CAS maintains an access control database that specifies who can access which community resources. Roles and groups can be used to structure the information in this database.

4) As depicted in Figure 2, when a user wants to use a resource, that user authenticates with CAS, and tells CAS what operations it wants to perform on which resources. If the CAS access control database allows the request, then CAS will delegate back to the user a CIC Impersonation Certificate containing restrictions that allow this delegated CIC credential be used only for the stated purpose. In other words, the CAS uses GSI restricted Impersonation Certificates to grant a capability (in the operating system sense [34]) to the user.

5) The user can then authenticate directly with the resource using the CIC's delegated credential. So the resource sees the request as if it were coming from the community's CIC. The resource also checks all requested operations against the restrictions carried by the delegated CIC. The delegation tracing extensions are important here as they provide a means for resource provides to identify the actual end user to whom the delegated CIC certificate was issued.

[image: image2.wmf]2. CAS reply, with

 and resource CA info

user/group

membership

resource/collective

membership

collective policy

information

CAS

Does the

collective policy

authorize this

request for this

user?

User

1. CAS request, with

 resource names

 and operations

Resource

Is this request

authorized for

the CAS?

Is this request

authorized by

the

capability?

local policy

information

3. Resource request,

 authenticated with

capability

4. Resource reply

capability

Figure 2: Community Authorization Service (CAS). In order to gain access to a CAS managed community resource, a user must first acquire a capability from CAS, which is then used to authenticate to the resource. Steps 3 and 4 can be repeated using the same capability until it expires.

During the first year of the project, we will develop a basic CAS server that supports simple group-based access control policies. In subsequent years of the project, we will extend CAS functionality to support: more scalable approaches for structuring CAS policies, including user roles, resource groups, hierarchies of users, resources, and policies, etc.; complex access control policies; prioritization, preemption, and revocation of access; and integration of accounting information into the policy decisions. Throughout the project we will apply and evaluate CAS in the context of Data Grid applications, Access Grid applications, bandwidth brokers, etc.—that is, the very user communities that have motivated this project.

Some of the research questions that we expect to encounter during this work include: What are appropriate policy languages for expressing access control restrictions? How to consistently name the policy evaluation points across varying resource types, to enable the consistent expression of policy across these varying resource types? What protocol should be used to request a capability from a CAS? How to distribute and/or replicate a CAS for scalability, performance, and/or reliability? How to scale the access control database to allow for fine-grained access by large numbers of users to large numbers of objects maintained on the resources?

Comparison with Akenti: Our capability-based CAS technology addresses similar—but not identical—problems to the LBNL Akenti system [25, 42]. However, there are important differences in focus and approach. In terms of focus, one major difference is that we are interested primarily in supporting the centralized specification of community policies governing collections of resources, such as who is allowed to read and write replicated data in a Data Grid; Akenti, on the other hand, is concerned primarily with expressing the use conditions that govern access to individual resources. This different focus leads us to adopt different technical approaches. For example, in Akenti every resource must know about and trust the CA of every potential user, which seems to us to be a significant obstacle to scalability. In CAS, a CAS server must know about and trust the CA of every user, but individual resources need know about only the CAS’ CA. Similarly, the CAS server provides a centralized location at which can be collected the various use conditions that govern access to a resource; once these are verified, the resource needs deal only with a single capability, rather than a potentially large number of use conditions. Finally, a CAS capability can in principle encode the right to perform a series of related operations, which has the potential to improve scalability. We believe that for these reasons CAS represents an interesting alternative—and most likely complementary (e.g., a CAS could refer group membership to an Akenti server, and an Akenti-based system could be extended to support use conditions expressed in terms of capabilities)—technology to Akenti. We are in constant contact with the Akenti group and will work with them closely to ensure that our technologies move forward in a coordinated fashion.

A.3.a.2. Restricted Delegation

A fundamental aspect of a security system for dynamic collaborations is the ability for one entity to delegate the right to act on its behalf to another entity [18, 19, 22, 27]. For example, in issuing a capability to a user, the CAS is delegating to the user the right to access resources on behalf of the CAS. And in starting a remote process, a user delegates to that process the right to act on behalf of the user, for example, to read the user's files and create additional processes on the user's behalf. However, when an entity delegates rights, it is inherently giving up some of its control over its resources to the other entity. In order to limit the consequences of accidental or malicious misuse of the delegated rights, an entity usually wants to restrict the delegation to include the minimum necessary rights. For example, CAS may wish to delegate the right only to read a particular file, and a user may wish to restrict a remote process only to create additional processes in specified locations.

GSI currently supports only a simple form of restricted delegation, through the use of Impersonation Certificates [44]. Carrying forward the previously described research that was started under past funding (Section A.2.b), we will extend GSI's restricted delegation to support much richer restriction policies. This new functionality will be used, most notably, by CAS to place fine-grained restrictions on the capabilities that it grants to users. But there are many other uses of restricted delegation throughout Grid computing. For example, we can restrict a super-scheduler only to start jobs in particular locations, and restrict started processes to have access only to the resources that the process requires to perform its function. We hope to explore these and other applications as well.

This work will involve R&D in: defining extensions to X.509 Impersonation Certificates to carry the restriction policies; defining, evaluating, and comparing restriction policy languages, including how the policy behaves through multiple levels of delegation [23]; defining a unified way of naming the resources and objects to which the restriction apply; extending GSS-API [30, 46] to allow applications to add restriction policies when performing delegation, and access the restriction policies from the credentials used for authentication; implementing tools to evaluate restriction policies; and validating the approach through use in CAS, remote job creation, etc.

A.3.a.3. Delegation Tracing

GSI Impersonation Certificates optionally allow for one entity that has been delegated rights to further delegate those rights to another entity. Such a capability is critical in a collaborative application. For example, a user may wish to obtain a capability (i.e., a delegated credential) from CAS, and then further delegate this capability to a process that the user creates on a remote computer. This results in delegation chains that may pass through resources in different organizations. For example, entity A may delegate to entity B, who may in turn delegate to entity C, etc. In evaluating such a delegated credential, the authorizing party may want to know what entities the delegated certificate passed through. For example, it way want to log this information for audit purposes, or it may want to disallow certificates that were delegated through some site that is knows was compromised.

We will: extend X.509 Impersonation Certificates (ICs) to contain additional information about the entities involved in the delegation of the IC; extend GSS-API to allow this delegation trace information to be retrieved by an application; extend the authorization policy language evaluation to allow for this trace information to be used; and build tools to log and audit the trace information.

A.3.a.4. Policy Languages

All of this authorization work hinges on the ability to define appropriate policy languages, which have properties such as expressivity, clarity, and provability. The definition of such policy languages is a fertile area of research in the security community [6, 7, 33, 37]. Within this project, we will evaluate and compare various existing policy languages for their applicability to the collaborative applications being addressed by this project. Wherever possible, other components of the our security and policy system will be built to be neutral to the actual language employed, so that we can evolve over time as new requirements are understood, and as the policy languages themselves evolve.

A.3.a.5. Policy Evaluation API & SDK

Policies need to be evaluated at various points in a collaboratory. CAS receives a capability requests from users, which must be evaluated to determine if the users are authorized to perform the requested operations, and thus if capabilities should be returned. Resources are accessed using Impersonation Certificates containing restriction policies, which must be evaluated by the resource to determine if the requested operation is authorized. Users must evaluate resource policies to determine whether to use a given resource, or to decide which resources are best for their needs. Defining and implementing a common API for evaluating policies would greatly assist the developers of these various tools. Within this project, we will evaluate existing APIs for this purpose [1, 37], and if necessary define a new one. Once we choose an API, we will implement this as part of the Globus Toolkit.

A.3.a.6. Accounting

Accounting is the sibling of authentication and authorization. After a resource has established the identity of a requestor (authentication), and has decided to grant the resource request to that identity (authorization), the resource will usually want to keep track of how much of the resource the requestor consumed (accounting). Such accounting information may be used for billing purposes, and/or to constrain how much of a resource the requestor consumes.

Within the sort of collaboration addressed by this proposal, accounting becomes a distributed problem. It is not sufficient that each resource simply keep track of its own usage. Rather, a community may want to keep track of how many community resources various members consume, and perhaps restrict the usage of community resources by various members. These requirements demand standard methods for describing resource usage and standard protocols for distributing usage information.

Since CAS is the community authority that grants access to resources, it must have access to all community accounting information in order to allow the use of policies that restrict resource usage based on previous consumption. However, all resource consumption is authenticated using a CAS issued capability, which hinders the ability of the resource to tie the accounting information back to a particular user directly. Further, CAS may wish to issues a capability that allows for only limited resource consumption by its holder. To address these issues, we propose to tag each CAS capability with a Globally Unique ID (GUID), to be used in two ways:

1) Each resource logs consumption based on the GUID of the capability used to access the resource. By comparing the GUIDs in the resource accounting records with a CAS log of the GUIDs it issued to users, a complete picture of usage of community resources by its members can be reconstructed. Further, CAS can then be configured to use this resource consumption information in its access control policies.

2) In order to constrain a particular capability to a limited amount of resource consumption, CAS can include the resource consumption policy into the capability. Resources can then track resource consumption for each GUID, and use this information to enforce the consumption policy attached to the capability.

Over the course of this project, we will gradually add these accounting related capabilities to the system. We will start by defining an X.509 Impersonation Certificate extension to carry the GUID in the CAS issued capability. Next, we will define GSS-API extensions for extracting this GUID from a capability credential that is used to authenticate with a resource. Then, we will define tools for allowing resources to log usage, and protocols and tools for distributing this accounting information back to the community. Next, we will implement mechanisms that allow CAS to make access control decisions based on resource usage. Finally, we will define the resource consumption policy language that CAS will embed into capabilities, and implement tools to assist resources in enforcing such policies.

Research questions addressed during this process include: What is the best way to carry and extract the GUID from a capability? How to build a scalable protocol for distributing accounting information? What access control policy language extensions are needed to enable decisions based on resource usage? What should be the policy language to be embedded in capabilities for expressing resource consumption restrictions?

A.3.a.7. Policy-Based Resource Selection

A distinguishing feature of many advanced collaboratory applications is that they select from and use resources from multiple administrative domains. Yet the “best” choice depends on not only physical characteristics of the individual systems but also the policies that govern access to those systems. In addition, specialized resources such as archival storage, supercomputers, and display devices used by high-end applications of interest to DOE often also involve complex policies. Experience shows that a major obstacle to the effective development and use of advanced applications is the diverse policies that govern resource use at different sites and in connecting networks.

We will hence develop a GSI-based policy-based resource management architecture that allows resource owner and resource consumer policies to be specified and consulted seamlessly at any stage during resource discovery, allocation, and management. Our implementation will build on broadly deployed security, resource discovery, and resource management mechanisms provided by the Globus toolkit and Condor system [31, 32], and will incorporate new policy language, policy template, policy checking, and policy publication mechanisms to be developed in this project. Interfaces to existing policy engines such as access control lists and Akenti use-conditions will allow verification of policy elements, while policy-enabled managers for differentiated services or integrated services networks, data archives, supercomputer schedulers, and disk caches (building, for example, on GARA mechanisms [14, 17]) will enable interesting application experiments.

This activity will build on a solid technology base and promising results obtained under DOE NGI FY99-00 funding, as discussed in Section A.2.b. In that project, we extended our resource management architecture with Generic Authorization and Access control interfaces, hence laying the groundwork for a highly flexible policy framework in which various local and group policies can be invoked when making local authorization and resource management decisions.
A.3.b. Authentication Procedures to Support Dynamic Collaboration Membership

We now turn to the first of the issues raised in Section A.1.c, namely technologies designed to enable rapid changes to collaboration membership. We review the three primary steps involved in joining a secure collaboration, point out “inefficiencies” and “obstacles” that can arise during each step, and outline the new approaches that we propose for overcoming these difficulties.

In order to join a secure collaboration, users and administrators must perform the following operations.

Credential acquisition: Before a collaboratory user is able to interact with other collaboratory users and resources, the user must acquire one or more identity credentials. This credential is used subsequently to identify that user to other participants and resources of the collaboration. In a PKI based security system, such as GSI, this identity credential takes the form of an X.509 certificate and its associated public/private keys, which the user must have signed by a Certificate Authority (CA). Existing approaches to identity credential acquisition have the following problems, which this project will address:

1) The process of obtaining this credential from a Certificate Authority (CA) is generally a time consuming and bothersome process for the user, due to the Registration Authority checks that are generally performed by the CA. The administration and operation of the CA itself also requires considerable effort, again mostly due to the RA functions of the CA. The time delay required to get a credential from a CA is often measured in days, and often requires offline checking of, for example, the user's passport. However, our experience [8] has shown that the RA check performed by the CA is often redundant and unnecessary, since the collaboration participants will in any case perform the necessary identity checks to determine appropriate membership of the collaboration. In other words, since collaborations already perform an RA check to admit the user to the collaboration, there is no need to perform a second RA check as part of the credential acquisition from a CA. This insight leads us to propose a new approach based on the use of a lightweight Online CA that can issue credentials instantaneously, along with support in the CAS to help facilitate the identity checking that such a collaboratory will use instead.

2) A user may already have a perfectly reasonable identity in the form of his or her local site login name. Managing a second identity in the form of an X.509 credential is a nuisance and error prone. We will again address this problem with the Online CA, which will allow a site's administrator to create a lightweight CA that issues identity credentials to users of that site, based on the user's proof of login to the site. Our collaborators at Michigan University have already explored this concept via a Kerberos-to-PKI gateway.

3) In many situations, acquiring a credential from a traditional CA will be unavoidable, and even appropriate. However, once the X.509 certificate is obtained, the user typically must store that credential on disk or smartcard, and take care to protect and not lose the credential's private key, else face another lengthy process of replacing it. This burden has proven to be a major obstacle to acceptance of PKI-based security systems by average users. We will address this problem through the development of an Online Credential Repository. Instead of having to worry about the day-to-day management and protection of his or her private key, the user can instead place the credential and keys into a secure repository, which is run by some other trusted party such as the user's site administrators. The user can then requests an impersonation credential from the repository, as necessary, while keeping his or her valuable identity credential safely locked up within the repository. Again, we have some experience with this concept in the form of the so-called “MyProxy” server that we designed in collaboration with a group of Portal developers.

Obtaining authorization rights from resources: Having acquired an identity, the next obstacle faced by a user is obtaining the privileges necessary to access resources that are part of the collaboration. This becomes an increasingly onerous task as the number of resources grows, as the user currently must often obtain privileges for each resource independently. Likewise, as the number of users grows, it becomes increasingly onerous on resource administrators to manage authorization for all of these users. We will address these scalability issues through development of the Community Authorization Service (CAS), as described above, which allows a user to obtain rights to use collaboratory resources through a single registration with the CAS.

Login (single sign-on): Before a user can authenticate into, and participate in, a collaboratory, that user must login. GSI already supports easy to use, single sign-on capabilities, as long as the user has just one credential, and that credential is available on (i.e., encrypted on the disk of) the machine from which the login operation is performed. We will address the following limitations in this approach:

1) With the current proliferation of CAs, it will be inevitable that users will have multiple credentials signed by different CAs. This can be cumbersome and error prone for users to manage, for example to figure out which credential to use in a given circumstance. We will address this problem by developing tools for managing multiple credentials, and for choosing which credentials to be used in which circumstances.

2) To assist in making credentials available to the user, regardless of that user's location relative to the credential, we will integrate this multiple credential handling with the Online Credential Repository and Online CA.

3) Collaborations that require a high degree of security may demand multi-factor authentication in order to login. While GSI already has prototype support for cryptographic smartcards, this support will be improved, expanded to support more devices such as biometric readers, and made available as part of the standard GSI release.

A.3.b.1. Online Certificate Authority

A traditional Certificate Authority (CA) does three things: it assigns a unique name or identity to the certificate requester, it binds that name to the requester's key pair by signing the request, and it binds that name to a real-world entity through its Registration Authority (RA) process. While the first two steps are straightforward and easily automated, the RA process is cumbersome to both users and CA administrators, because it typically requires non-automated steps such as checking the user's passport to validate the real-world entity. The purpose of the RA process is two-fold: to enable re-issuance of the name bound to a new key in the event of loss or compromise of the previous key; and to allow for the name to contain semantic content that can be evaluated by some other party based on its trust of the CA.

Our experience has shown that there are numerous situations where this onerous, off-line RA process is not necessary. For example:

1) If the user already has an existing identity in the form of a site login, this existing identity can be used to automate the RA process. In other words, the user can exploit his or her existing site login in order to automatically get an X.509 identity certificate that is signed by the site's CA.

2) In many collaborations, the collaborative community runs its own Registration Authority process before admitting a user to the community. Therefore, there is no need for the CA issued name to contain any semantic content: the community will perform the necessary checks to allow an arbitrary name to be used by the user to gain access to the collaboration. Further, re-issuance of the name can be handled by the community RA with little additional overhead. Therefore, there is no need for the CA to perform any RA function. Rather, the CA just needs to guarantee that the name is unique, and only bound to the correct key pair. In this situation, a very lightweight CA can be run, which automatically issues uniquely named certificates.

We will develop a lightweight Online CA, which can address these two situations. This Online CA is a service, with an associated client, that allows for automatic issuance of identity certificates. This Online CA can be set up to handle either the first case above, by requiring authentication by the client using site login mechanisms (e.g., Kerberos, name/password, one-time-password, etc), or the second case above, by not requiring any user authentication. In both cases, the Online CA performs checks to guarantee that the name issued to the requester is unique.

We do not believe that this Online CA will replace traditional CAs. Rather, it will instead fill an important niche, by enabling the use of security by communities for whom the high costs and burdens of a traditional CA are unnecessarily onerous.

A.3.b.2. Online Credential Repository

Traditional PKI-based security systems store user identity credentials on disk, encrypted with a password. Our experience with GSI's use of this approach has shown that most users dislike managing their own identity credentials in this manner. Doing so is error prone (and thus less secure) and sometimes results in the credentials not being available from where they are needed by the user.

We will address this problem by developing an online certificate repository. This repository is a service that holds the user's X.509 identity certificate and private key. When the user needs to use the credential, a client is used to authenticate with the repository using local site security (e.g., Kerberos), name/password, one-time-password, etc. In response, the repository will use the user's credential to delegate an Impersonation Credential back to the client. This IC can then be used to gain access to the community services.

As we noted above, these ideas have been explored in prototype form in the MyProxy system. Our work here will build on, robustify, and extend that work. We will also track and participate in the IETF SACRED working group [3], which is addressing a similar problem.

A.3.b.3. Support for Multiple User Credentials

With the proliferation of CA's, users will likely have different credentials for different purposes. In fact, the act of getting a capability cert from CAS is basically that of obtaining another (limited purpose) credential that the user must manage. We will develop tools, and extend the online credential repository, to support handling of multiple user credentials.

Aside from the database issues of managing multiple credentials, two other issues must be addresses:

1) When a user with multiple credentials wishes to gain access to a resource, the user must determine which credential to use to authenticate with the resource. The choice may be made from a database of identity credentials held by the user, or perhaps by using an existing identity credential to requests an appropriate capability credential from CAS, or some other identity credential from a credential repository. We will develop tools and methods to assist in this selection.

2) Suppose the user wants to start a remote process, and delegate to that process rights to access various other resources, each of which requires a different delegated credential. We will develop tools and methods to assist clients in determining exactly which credentials need to be delegated.

A.3.b.4. Multi-Factor Authentication

Collaborations that require a high degree of security may demand multi-factor authentication. While GSI already has prototype support for smartcards which was developed under past funding, this support will be improved, expanded to support more devices such as biometric readers, and made available as part of the standard GSI release.

A.3.c. Managing Dynamic Resource Sets

We now turn to the second issue raised in Section A.1.c, namely enabling addition of new resources to a collaboration. Resource providers who want to contribute (or sell) resources to a collaboration are presented with the following challenges:

1) Credential acquisition: Before a resource can be contributed to a collaboration, the resource administrator must acquire a host credential for the resource, which is used to identify the resource to collaboration members. If an administrator must obtain credentials for many resources, the current approach of interacting with a CA to obtain each host credential separately can be an onerous task. We will address this issue by adding support to GSI for Subordinate Certificate Authorities for Domains, whereby the CA issues to the administrator of a set of resources a single subordinate CA credential, which in turn allows the administrator to generate the required host credentials without further interaction with the CA.

2) Integration into local system: The Grid Security Infrastructure must integrate into local security solutions, such as Kerberos and AFS. While GSI is already fairly adept in this regard, improvements are needed to reduce this barrier to acceptance by resource providers.

3) Establishing authorization policies: In order for users of the collaboration to use the resource, the resource provider must set up appropriate authorization policies. This is currently a cumbersome process for large collaborations, as per-user authorization policies must be maintained on each resource. We will address this scalability issue through the development of the Community Authorization Service (CAS), as described above, which allows a resource administrator to easily grant bulk access to a community, while letting a community service handle the fine grained authorization and prioritization within its CAS server.

A.3.c.1. Subordinate Certificate Authorities for Domains

Suppose that a resource provider has many individual resources that it wants to make available to a collaboration. Currently that provider must obtain a host credential separately from a CA for each individual resource. Unfortunately, the Online CA approach described above cannot be used to automate this process, because the name of the host credential must contain semantic content (i.e., the DNS name of the host), which in turn requires that the CA perform its Registration Authority process to ensure that it is issuing the host credential to the actual owner of the host. This makes host credential acquisition time consuming and painful, both for the resource provider and for the CA administrator.

Fortunately, the X.509 standard has a way of improving this situation. A CA can issue a single subordinate CA credential to the resource provider. However, this subordinate CA credential is restricted, using the X.509 Name Constraints extension [21], to only allow host credentials to be signed for hosts in a particular domain. The resource provider can then use this subordinate CA credential to issue host credentials with that domain, without further interaction with the resource.

We will add support to GSI for this approach. Specifically, this requires extension of GSI's certificate path validation algorithms to check the X.509 Name Constraints extension. We will also provide simple tools which a resource administrator can use to manage the subordinate CA credential securely, and generate host credentials easily.

A.3.c.2. Integration with Local Security Solutions

Various resources may be protected using local security mechanisms, such as Kerberos or DCE. If GSI is being used to authenticate into the resource from the outside, this implies that approaches are needed to enable the GSI credential to be used to acquire the necessary local security system credential. For example, a storage resource provider may use AFS filesystems locally, which requires that a local AFS credential be required in order for the FTP daemon to can gain access to the files of a particular user.

While GSI is already fairly adept in this regard, improvements are needed to reduce this barrier to acceptance by resource providers. Past funding paid for the development of a PKINIT implementation, which allows a GSI PKI credential to be used to acquire a Kerberos ticket [45]. Additional work is needed to PKINIT to make it easier to use, and easier to integrate with resource services. We will also develop similar tools to allow a GSI credential to be used to acquire an AFS credential. In addition, these tools will be extended to evaluate the restriction policies of delegated credentials, to ensure that the credential can actually be used to acquire the Kerberos, DCE, or AFS credential.

A.3.d. Integration of Security Into Collaborative Applications

We now address the fourth and final issue raised in Section A.1.c, namely the integration of security and policy technologies into tools and applications. In order to support the successful integration of GSI into collaborative applications, we propose to the following additional work under this project:

1) Extensions to Standard APIs: In order to integrate security into applications, developers of collaboration software require high quality, standards based, feature rich security APIs and SDKs. We will continue our ongoing work on the development and extension of standard APIs for security.

2) Tracking Standards: Various security and policy standards are evolving in the Global Grid Forum, the Internet Engineering Task Force, and elsewhere. It is important that we contribute to, and track these standards. We will do so under this funding.
3) Independent Data Unit support: Many collaborative applications (e.g., Access Grid, conferencing [9]) require authentication and message protection of non-TCP communication, such as UDP communication for multimedia, and store-and-forward messaging. We will extend GSI to include support for offline, unreliable, out-of-order, and/or multicast communication by adding support for Independent Data Units.

4) Flexible application of message protection: Protecting communication often requires tradeoffs between performance and the level of protection. We will extend GSI to assist developers to understand what tradeoffs that are available to them, and to use policy to select appropriate tradeoffs.

5) Integration into development frameworks: Collaboration application developers typically use high level development languages, libraries, and frameworks, such as Web browsers, Java, CORBA, .NET, Python, Perl, etc. We will assist in the integration of our security and policy solutions into various development frameworks that are important to collaboration developers.
6) Improving error reporting and logging: Diagnosing problems that arise in the use of the security and policy tools require high quality error reporting and logging. We will improve this aspect of GSI, in order to make GSI more amenable to deployment in production collaboratories.
A.3.d.1. Extensions to Standard APIs

In order to integrate security into applications, developers of collaboration software require high quality, standards-based, feature-rich security APIs and SDKs. For example, an important element of GSI’s success is its use of the IETF standard Generic Security Service (GSS) API [30]. Experience has proven that while this API is good, it needs improvements. Work has already begun within the Global Grid Forum, led by members of this proposal, to specify a first set of extensions to GSS-API. Under this research project, we will carry these (currently unfunded) efforts forward, and implement the resulting extensions into GSI. Similar efforts will be carried out for other APIs developed under this proposal, such as the GAA-API [37].

A.3.d.2. Tracking Standards

Members of this project are already working in the Global Grid Forum and the Internet Engineering Task Force working to define and standardize protocols and APIs for Grid security. Current GGF and IETF drafts include:

1) "Internet X.509 Public Key Infrastructure Impersonation Certificate Profile" [44]
2) "TLS Delegation Protocol" [24]
3) "Internet X.509 Public Key Infrastructure Restricted Impersonation Certificate Profile" [41]
4) "GSS-API Extensions" [46]
It is critical that these, and other future work resulting from this project, continue to be developed in community standards organizations and that the tools that result from this project track these standards as they evolve. We propose to do so under this project funding. (We note that our current involvement, like other work in the security area, is supported under projects for which funding is ending. Hence funding for this project is essential if this work is to continue.)

A.3.d.3. Independent Data Unit Support

Many collaborative applications require "protection of a generic data unit (such as a file or message) in a way that is independent of the protection of any other data unit and independent of any concurrent contact with designated 'receivers' of the data unit" [2]. Such protection can be used by collaborative applications to secure UDP communication between interacting parties, by store-and-forward systems such as email and instant messaging, and even for protecting files that are stored on community storage systems. We propose to extend GSI to support protection of Independent Data Units, likely through the implementation and extension of existing standards such as "Cryptographic Message Syntax" [20] and "Independent Data Unit Protection Generic Security Service Application Program Interface (IDUP-GSS-API)" [2].

A.3.d.4. Flexible Application of Message Protection

Protecting communication often requires tradeoffs between performance and the level of protection. Improved encryption algorithms, perhaps specialized to particular types of data, may change the tradeoff available to collaboratory developers. And with the increasing deployment of IPsec, which provides for host-to-host message protection, even more tradeoffs will likely be possible in the near future. We propose to extend GSI to assist developers to understand what tradeoffs that are available to them, and to use policy to select appropriate tradeoffs.

A.3.d.5. Integration Into Development Frameworks

Collaboration application developers typically employ a variety of tools to build their systems. For example, Web browsers or Java clients may be used to present graphical user interfaces to the users. Various services of the collaboration may be implemented using other high level development language, libraries, and frameworks, such as Java, Perl, Python, MPI, CORBA, etc.

While it is beyond the scope of this proposal to integrate our security infrastructure into all of these systems ourselves, we will prototype or implement such integration for some of them (e.g., Java [29]), and actively engage and assist other groups who wish to perform this integration.
A.3.d.6. Improved Error Reporting and Logging

Diagnosing problems that arise in the use of the security and policy tools require high quality error reporting and logging. For example, if a user is unable to login to a collaboration, error messages and related diagnostic tools should be able to assist the user in solving the problem without further (costly) assistance. And if there is a security breach of some sort in the collaboratory, high quality logging can be invaluable to diagnosing and fixing the breach. We propose to improve this aspect of GSI, in order to make GSI more amenable to deployment in production collaboratories.

A.3.e. Tasks and Milestones

In the project activity details below we show year 1 tasks in some detail; activities for subsequent years will be detailed in the project planning tasks that will take place in Q4 of the previous year. Please note that this plan overview is preliminary and subject to change of technical and deployment approach. Years indicated are from the initiation of the project. This high level overview does not indicate task duration - many of the tasks, once started, are ongoing. Some may diminish in workload as the project proceeds, replaced by tasks that will be identified in Year 2-5 project planning efforts.

	Who
	Type
	Activity or Milestone

	
	
	YEAR 1 Q1-2

	Joint
	Coordinate
	Develop project plan for Project Year 1

	ISI
	Specification
	Develop CAS server and client specifications

	ANL
	Specification
	Develop CAS protocol specification

	Joint
	Development
	Implement CAS server & client, with ACL-based policy language

	Joint
	Research
	Prototype storage, compute, and bandwidth broker resource services that accept CAS capabilities

	ISI
	Research
	Prototype policy evaluation API & SDK

	ISI
	Research
	Prototype simple ACL policy evaluator

	
	Milestone
	Demonstrate CAS in small testbed with multiple resource types

	ANL
	Research
	Prototype compute, storage, & bandwidth broker resource servers that support CAS

	ANL
	Standards
	Propose standards for X.509 Impersonation Certificates

	ANL
	Standards
	Propose standards for TLS Delegation Protocol

	ISI
	Standards
	Propose standards for X.509 Restricted ICs

	ANL
	Standards
	Propose standards for Delegation Tracing

	ANL
	Standards
	Propose standards for GSS-API Extensions

	ISI
	Research
	Prototype Extended ACL policy evaluator

	UW
	Research
	Prototype ClassAd policy evaluator

	
	
	

	
	
	Year 1 Q3-4

	ANL
	Development
	Implement and track all proposed standards

	ANL
	Development
	Implement restricted delegation extensions, with simple attr/value restrictions

	
	Deliverable
	Deliver GSS-API, which tracks standards, and has restricted delegation

	ISI
	Development
	Incorporate restricted delegation into CAS

	Joint
	Development
	Incorporate proposed standards into CAS

	
	Milestone
	Demonstrate CAS, with restricted delegation, in testbed with real application

	ANL
	Development
	Improve error reporting and logging

	ANL
	Development
	Implement storage and compute resource services that support CAS

	
	Deliverable
	Deliver CAS version 1, and supporting storage & compute services

	Joint
	Research
	Review and explore utility of more powerful policy languages

	Joint
	Coordinate
	Develop project plan for Project Year 2

	
	
	

	
	
	YEAR 2

	Joint
	Standards
	Finalize all standards

	Joint
	Development
	Implement all final standards

	
	Deliverable
	Deliver GSS-API with final standards

	ISI
	Specification
	Re-evaluate CAS specifications, based on year 1 experience

	ISI
	Development
	Implement changes to CAS, based on revised specifications

	
	Milestone
	Deploy CAS into real collaboration

	Joint
	Research
	Evaluate policy languages for CAS, restricted delegation, and resource discovery

	Joint
	Development
	Implement policy evaluation API & SDK

	Joint
	Research
	Prototype use of languages & API for extended CAS & restricted delegation policies

	ANL
	Development
	Add accounting GUID to CAS capabilities, and use it for resource usage logs

	
	Deliverable
	Deliver CAS version 2, and support storage & compute services

	ANL
	Specification
	Develop Online CA specification

	ANL
	Development
	Implement Online CA

	
	Milestone
	Demonstrate Online CA in friendly collaboration

	ANL
	Specification
	Develop Online Crednetial Repository specification

	ANL
	Development
	Implement Online Credential Repository

	
	Milestone
	Demonstrate Online Credential Repository in friendly collaboration

	ANL
	Development
	Implement support for subordinate CAs for domains

	Joint
	Coordinate
	Develop project plan for Project Year 3

	
	
	

	
	
	YEAR 3

	ANL
	Development
	Re-evaluate and implement changes to Online CA

	
	Deliverable
	Deliver Online CA version 1

	
	Milestone
	Deploy Online CA into real collaborations

	ANL
	Development
	Re-evaluate and implement changes to Online Credential Repository

	
	Deliverable
	Deliver Online Credential Repository version 1

	
	Milestone
	Deploy Online Credential Repository into real collaborations

	Joint
	Research
	Choose policy language(s)

	ISI
	Development
	Implement policy evaluation for the language(s)

	ISI
	Development
	Implement policy language(s) into CAS and restricted delegation

	
	Deliverable
	Deliver CAS version 3

	
	Milestone
	Deploy CAS with improved policy language support into real collaboration

	ANL
	Development
	Improve integration with Kerberos and AFS

	ANL
	Development
	Implement tools and protocol for distributing accounting information

	
	Deliverable
	Deliver GSS-API, and miscellaneous supporting tools

	ANL
	Development
	Add simple multiple credential handling to client and Online Credential Repository

	ISI
	Standards
	Propose standards for policy languages, and policy evaluation API

	Joint
	Coordinate
	Develop project plan for Project Year 4

	
	
	

	
	
	YEAR 4

	ANL
	Development
	Implement tools for aggregating and analyzing community accounting information

	
	Deliverable
	Deliver community accounting tools

	ISI
	Research
	Extend policy language to support resource consumption policies

	ISI
	Development
	Extend CAS and resources to support resource consumption policies

	ISI
	Research
	Prototype CAS distribution and replication

	
	Milestone
	Deploy CAS with consumption policies

	Joint
	Research
	Prototype policy based resource discovery and selection

	ANL
	Development
	Add multiple credential discovery

	
	Milestone
	Deploy Online Cred Repository with multiple credential handling & discovery

	
	Deliverable
	Deliver updated CAS, Online CA, Online Credential Repository

	Joint
	Research
	Prototype multi-factor authentication

	Joint
	Standards
	Propose standards for distributed accounting and resource consumption policies

	Joint
	Research
	Prototype Independent Data Unit support

	Joint
	Coordinate
	Develop project plan for Project Year 5

	
	
	

	
	
	YEAR 5

	ISI
	Development
	Implement CAS distribution and replication

	
	Milestone
	Deploy CAS with distribution and replication

	Joint
	Development
	Implement policy based resource discovery and selection

	ANL
	Development
	Add multiple credential delegation

	Joint
	Development
	Implement and deploy multi-factor authentication

	Joint
	Development
	Implement and deploy Independent Data Unit support

	Joint
	Development
	Implement tools to assist in flexible application of message protection

	
	Deliverable
	Deliver updated CAS, Online CA, Online Credential Repository

	
	Deliverable
	Deliver GSI with IDU support, multi-factor authentication, supporting tools

A.3.f. Deliverables

As indicated in Section A.1.d (Contributions), and Section A.3.e (Tasks and Milestones) this project will deliver:

· A wide variety of research results relating to PKI infrastructure, delegation, policy, and integration of these capabilities into real tools and applications. We expect these results to generate considerable interest.

· High-quality toolkits (APIs, SDKs, services, tools) incorporating the next-generation mechanisms developed as a result of our research, including a series of releases of CAS, Online CA, Online Credential Repository, GSS-API, and other related tools.

· Protocols and API standards, for numerous aspects of the toolkits.

· (In collaboration with Collaboratory Pilots and other DOE Applications) Large-scale deployment, application, and evaluation of security and policy mechanisms.

A.3.g. Connections, Technology Transfer, Application

The widespread adoption of the security and Globus technologies that we have developed to date (in particular, GSI, discussed in Section A.2.a above, as well as the various elements of the Globus Toolkit, which use GSI capabilities) provides us with a highly effective technology transfer vehicle. Ongoing work aimed at simplifying Globus Toolkit use and enabling binary distribution of individual components (e.g., GSI) will facilitate this. The ease with which other groups can integrate GSI mechanisms into tools provides an important and low-cost vehicle for technology transfer to large user communities.

During this project, we will continue to enhance and promote these technologies to the scientific community at large, within the context of national/international Grid efforts and the larger SciDAC/DOE community, with the goal of both obtaining additional input on requirements and enabling large-scale evaluation in practical settings. We provide details on these activities in the following, and also talk about our work with international standards bodies.

A.3.g.1. SciDAC and Other DOE Projects

The PIs have played a leadership role in establishing a broad national—and indeed international—consensus on the importance of Grid concepts and on specifics of a Globus-based Grid architecture. A wide range of projects have been established that together are developing and applying Grid concepts to problems of tremendous scientific importance (see Figure 1). These activities include “Data Grid” projects in such areas as high energy physics, climate science, and astronomy; “Computational Grid” projects concerned with access to computation; and “Instrumentation Grid” projects concerned with access to instrumentation. The present proposal is an essential and central part of this overall project mix, which depend on the availability of powerful, flexible, and simple security and policy mechanisms. If this project is not funded, these other efforts will face serious difficulties.

We foresee, in particular, close connections with a number of existing DOE-funded technology and application projects, as well as with new projects proposed under the SciDAC program. In brief, this project will complement a range of projects that are collectively concerned with developing, deploying, applying, and evaluating a DOE Science Grid Collaboratory Software Environment. We outline here some of the major connections.

The proposed “DOE Science Grid” Collaboratory Pilot will prototype, evaluate, apply, and refine an operational Grid infrastructure across DOE laboratories. The DOE Science Grid project looks to this project to provide the next-generation security mechanisms that will provide the DOE community with uniform, high-performance, convenient, and secure access to data. The DOE Science Grid project also provides us with an effective deployment mechanism, ensuring for example that GSI-enabled servers are deployed at DOE laboratories.

A submitted proposal from ESnet would establish DOE Certificate Authority and information services, hence providing essential infrastructure elements for a future DOE Science Grid. Our proposal complements that activity by addressing essential security infrastructure mechanisms needed to exploit the availability of these services.

The proposed “Enabling Technology Center for Scientific Data Management” will, among other things, develop MPI-IO interfaces to high-performance cluster file systems. We plan a collaborative effort aimed at enabling high-performance, secure GridFTP-based access to these systems.

The DOE-funded Particle Physics Data Grid project is focused on the application of Data Grid concepts to the needs of a number of U.S.-based high energy and nuclear physics experiments. In PPDG-1 (funded through FY2001), the PPDG team made heavy use of Globus security technologies. In PPDG-2 (proposed as a SciDAC 01-06 Collaboratory Pilot), the PPDG team has chosen to adopt Globus technologies as their core technology base. They are looking to this project to provide them with the scalable security technologies needed for large-scale Data Grids.

The DOE-funded Earth System Grid project is focused on the application of Data Grid concepts to the needs of climate researchers. In ESG-1 (funded through FY2001), the ESG team both developed and made heavy use of Globus security technologies, including our Community Authorization Service. ESG-2 (proposed as a SciDAC 01-06 Collaboratory Pilot) is looking to this project for next-generation security tools.

The proposed “National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion” will provide another user community for our work, one concerned with achieving high-performance access to fusion simulation data.

The proposed work complements work on Akenti at LBNL. As discussed in Section A.3.a.1, we will continue to work closely with the LBNL group to ensure compatibility of infrastructure and goals.

A.3.g.2. Standards Bodies and Open Source Consortia

Another important technology transfer vehicle for our work are international standards bodies. Participants in this project are active participants in the Global Grid Forum. We have already started efforts within the Global Grid Forum (where Tuecke chairs the security working group) on standardizing GSI extensions, with five draft RFCs being presented at GGF1 in March 2001 and two of those being also presented to the IETF. Within IETF, Engert is Kerberos chair and Neuman, Ryutov, and Pearlman are developing GAA [37]. We will continue these efforts with the goal of integrating the results of our work into standards. The IRTF Authorization Working Group has also expressed strong interest in our work and we have met with them on several occasions.

In order to further our overall goal of achieving broad adoption of open standards/open source-based Grid infrastructure, we are investigating the feasibility of establishing a Consortium for Open Grid Software (COGS), a body dedicated to the creation, documentation, and distribution of high-quality open source Grid software. Details are not finalized but we will continue to pursue this goal over the next several months.

A.3.h. Evaluation Criteria

We address specifically the special evaluation criteria described in the call.

Potential to make a significant impact in the effectiveness of SciDAC applications researchers. We address this issue in Sections A.1, and point also to the strong letters of support from a set of application groups, selected to be representative rather than complete.
The extent to which the project will test important collaborative technologies. This project will both develop pioneering new technologies for security and policy in collaborative settings, and work with application groups to explore the practicality of these technologies in diverse settings.
Extent to which the results of the project are extensible to other program or discipline areas. The entire goal of this project is to develop and make available general-purpose security and policy technologies of relevance to a wide range of program and discipline areas. The letters of support indicate the breadth of relevance: see also Section A.3.g.
Degree to which the project adheres to the management philosophy of incorporating collaboration into the project execution. As we explain in Section A.4, this project is highly distributed and collaborative in nature, and its management structure and mechanisms are designed with this in mind.
The quality of the plan for ensuring interoperability and integration with software produced by other SciDAC efforts. Our focus on providing basic mechanisms, and our work with application groups and standards bodies to ensure widespread adoption of these mechanisms, will do much to ensure interoperability and integration. In addition, as we explain in Section A.3.g, we plan to work closely with a range of SciDAC technology and application groups.
The extent to which the project incorporates broad community (industry/academia/other federal programs) interaction. As we explain in Section A.3.g, we have extremely strong connections with other federal and international Grid efforts, via collaborations that we have established and nurtured over several years. Outside DOE, we already have a large user base and are building connections with Internet 2 (e.g., via their PKI lab at UW) and industry (e.g., Microsoft, Sun, IBM). In addition, the Global Grid Forum that Foster co-founded provides a wonderful vehicle for community interaction.

Quality and clarity of proposed work schedule and deliverables. Sections A.3.e and A.3.f provide a detailed work schedule and set of deliverables.
Knowledge of and coupling to previous efforts for collaborative technologies such as DOE 2000. We discuss in Section A.2 results obtained under previous DOE funding. In Section A.3.a.1, we describe the relationship of this work to the DOE2000-funded Akenti system. We emphasize that GSI is already an integral part of DOE security technologies, as evidenced by its adoption within the proposed DOE Science Grid.
Relevance of the proposed research to the terms of the announcement. We believe this is clear: we will develop and evaluate collaboratory middleware services of direct relevance to a range of DOE-relevant applications, and in so doing advance our knowledge of our how to construct and operate these services.
Uniqueness of the proposer's capabilities. We do not believe that any other team could come anywhere close to fielding a comparable combination of expertise in Grid and security technologies and collaboratory requirements, and, in particular, ability to produce security technologies that are actually used by application groups.
Demonstrated usefulness of the research for proposals in other DOE Program Offices as evidenced by a history of programmatic support directly related to the proposed work. DOE’s OBER and OHENP have provided support for the Earth System Grid and Particle Physics Data Grid projects (both of which build on Globus security technologies) and continue to express strong support for further development of Grid technologies.

A.4. Subcontract or Consortium Arrangements

The proposed research will be performed by a multi-institutional team comprising staff at Argonne National Laboratory, USC’s Information Sciences Institute, and the University of Wisconsin. (We note that we expect each institution to be funded directly by MICS: no subcontracts are involved.) We indicate in Section A.3.e the specific tasks to be undertaken by each participant; here, we summarize expertise and major areas of contribution:

· ANL provides expertise in distributed computing and networking, and will contribute to development of both security and policy technologies. Argonne’s Distributed Systems Laboratory has an international reputation as a leader in “Grid” technologies. Engert, Foster, and Tuecke have all worked on both security technology and applications to DOE science disciplines for several years.

· USC/ISI provides expertise in distributed computing and networking, and will contribute to development of both security and policy technologies. USC/ISI has an international reputation as a leader in “Grid” technologies. Kesselman and Pearlman have worked on security technology and applications to science disciplines for several years.

· UW provides expertise in distributed computing, and will contribute to the development of policy technologies technologies. Livny has an international reputation due to his pioneering work on the Condor distributed computing system. He has worked closely with the physics community for several years.

The participants have a long and fruitful history of joint work in a number of areas, including security and policy, and form in many respects a single “virtual laboratory.” Hence, we are able to adopt a fairly informal management structure and focus our energies on maximizing the effectiveness of our internal collaborative processes and our interactions with other groups.

Our management structure will operate as follows. PI Tuecke will serve as primary point of contact with DOE. Tuecke, Kesselman, and Livny will operate as a Management Council.

Our internal collaborative processes will make extensive use of shared code repositories, webs, and email lists (which are already in place) and Access Grid technology and telephone for multi-site discussions. The Management Council will meet via Access Grid or telephone at least weekly to discuss progress and coordinate activities. Regular meetings involving project staff conducted on Access Grid and in person will be used to plan future activities.

Interactions with the larger SciDAC community will be structured in terms of an alpha testing program, which is already in place and proving very successful; development of documentation and tutorials on specific security Toolkit components; and involvement in coordination/outreach activities such as the Global Grid Forum.

B. Literature Cited

1.
"Authorization (AZN) API," Open Group Technical Standard C908, 2000.

2.
Adams, C., "Independent Data Unit Protection Generic Security Service Application Program Interface (IDUP-GSS_API," RFC 2479, December 1998.

3.
Arsenault, A. and Farrell, S., "Securely Available Credentials - Requirements," IETF Internet Draft draft-ietf-sacred-reqs-01.txt, February 2001.

4.
Beiriger, J., Johnson, W., Bivens, H., Humphreys, S. and Rhea, R., Constructing the ASCI Grid. in Proc. 9th IEEE Symposium on High Performance Distributed Computing, (2000), IEEE Press.

5.
Belani, E., Vahdat, A., Anderson, T. and Dahlin, M. The CRISIS Wide Area Security Architecture. in Proceedings of the 8th Usenix UNIX Security Symposium, January 1998.

6.
Blaze, M., Feigenbaum, J., Ioannidis, J. and Keromytis, A., "The Keynote Trust Management System, Version 2," IETF RFC 2704, September 1999.

7.
Blaze, M., Feigenbaum, J. and Lacy, J.S. Decentralized Trust Management. in Proc. of the IEEE Conference on Security and Privacy, 1996.

8.
Butler, R., Engert, D., Foster, I., Kesselman, C., Tuecke, S., Volmer, J. and Welch, V. Design and Deployment of a National-Scale Authentication Infrastructure. IEEE Computer, 33 (12). 60-66.

9.
DeFanti, T. and Stevens, R. Teleimmersion. in Foster, I. and Kesselman, C. eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999, 131-155.

10.
Foster, I. and Karonis, N. A Grid-Enabled MPI: Message Passing in Heterogeneous Distributed Computing Systems. in Proc. SC'98, 1998.

11.
Foster, I., Karonis, N.T., Kesselman, C., Koenig, G. and Tuecke, S. A Secure Communications Infrastructure for High-Performance Distributed Computing. in Proc. 6th IEEE Symp. on High Performance Distributed Computing, 1997, 125--136.

12.
Foster, I. and Kesselman, C. Globus: A Toolkit-Based Grid Architecture. in Foster, I. and Kesselman, C. eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999, 259-278.

13.
Foster, I. and Kesselman, C. (eds.). The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, 1999.

14.
Foster, I., Kesselman, C., Lee, C., Lindell, R., Nahrstedt, K. and Roy, A., A Distributed Resource Management Architecture that Supports Advance Reservations and Co-Allocation. in Proc. International Workshop on Quality of Service, (1999), 27-36.

15.
Foster, I., Kesselman, C., Tsudik, G. and Tuecke, S. A Security Architecture for Computational Grids. in ACM Conference on Computers and Security, 1998, 83-91.

16.
Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. Intl. J. Supercomputer Applications, (to appear).

17.
Foster, I., Roy, A. and Sander, V., A Quality of Service Architecture that Combines Resource Reservation and Application Adaptation. in Proc. 8th International Workshop on Quality of Service, (2000).

18.
Gasser, M. and McDermott, E., An Architecture for Practical Delegation in a Distributed System. in Proc. 1990 IEEE Symposium on Research in Security and Privacy, (1990), IEEE Press, 20-30.

19.
Hardjono, T. and Ohta, T. Secure End-to-End Delegation in Distributed Systems. Computer Communications, 17 (3). 230-238.

20.
Housley, R., "Cryptographic Message Syntax," RFC 2630, June 1999.

21.
Housley, R., Ford, W., Polk, W. and Solo, D., "Internet X.509 Public Key Infrastructure Certificate and CRL Profile," IETF, RFC 2459, 1999.

22.
Howell, J. and Kotz, D., End-to-End Authorization. in Proc. 2000 Symposium on Operating Systems Design and Implementation, (2000), USENIX Association.

23.
Howell, J. and Kotz, D., A Formal Semantics for SPKI. in Proceedings of the Sixth European Symposium on Research in Computer Security (ESORICS 2000), (2000), 140-158.

24.
Jackson, K., Tuecke, S. and Engert, D., "TLS Delegation Protocol," Internet Draft draft-ietf-tls-delegation-00.txt, February 2001.

25.
Johnston, W. and Larsen, C., "A Use-Condition Centered Approach to Authenticated Global Capabilities: Security Architectures for Large-Scale Distributed Collaboratory Environments," Lawrence Berkeley National Laboratory, Technical Report 3885, 1996.

26.
Kaufman, C., Perlman, R. and Speciner, M. Network Security. Private Communication in a Public World. Prentice Hall, 1995.

27.
Kortesniemi, Y., Hasu, T. and Partanen, J., A Revocation, Validation and Authentication Protocol for SPKI-Based Delegation Systems. in Network and Distributed System Security Symposium, (2000).

28.
Lampson, B., Abadi, M., Burrows, M. and Wobber, E., Authentication in Distributed Systems: Theory and Practice. in Proceedings of the Symposium on Operating System Principles, (1991).

29.
Laszewski, G.v., Foster, I., Gawor, J. and Lane, P. A Java Commodity Grid Toolkit. Concurrency: Practice and Experience, 13.

30.
Linn, J., "Generic Security Service Application Program Interface, Version 2," IETF, RFC 2078, 1997.

31.
Litzkow, M., Livny, M. and Mutka, M. Condor - A Hunter of Idle Workstations. in Proc. 8th Intl Conf. on Distributed Computing Systems, 1988, 104-111.

32.
Livny, M. High-Throughput Resource Management. in Foster, I. and Kesselman, C. eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999, 311-337.

33.
Livny, M., Matchmaking: Distributed Resource Management for High Throughput Computing. in Proceedings of the Seventh IEEE International Symposium on High Performance Distributed Computing, (1998), IEEE Press.

34.
Mullender, S.J. and Tanenbaum, A.S. The Design of a Capability-Based Distributed Operating System. The Computer Journal, T29. 289-299.

35.
Neuman, B.C., Proxy-Based Authorization and Accounting for Distributed Systems. in Proceedings of the 13th International Conference on Distributed Computing Systems, (1993), 283-291.

36.
Ryutov, T., Gheorghiu, G. and Neuman, C. An Authorization Framework for Metacomputing Applications. Cluster Computing, 2. 165-175.

37.
Ryutov, T. and Neuman, C., Representation and Evaluation of Security Policies for Distributed System Services. in Proceedings of the DARPA Information Survivability Conference & Exposition, (2000).

38.
Sandhu, R., Coyne, E., Feinstein, H. and Youmanet, C. Role-Based Access Control Models. IEEE Computer, 29 (2).

39.
Schneier, B. Applied Cryptography. Wiley, 1996.

40.
Steiner, J., Neuman, B.C. and Schiller, J., Kerberos: An Authentication System for Open Network Systems. in Proc. Usenix Conference, (1988), 191-202.

41.
Thompson, M., Engert, D. and Tuecke, S., "Internet X.509 Public Key Infrastructure Restricted Impersonation Certificate Profile," Global Grid Forum draft-ggf-x509-res-delegation-01.txt, February 2001.

42.
Thompson, M., Johnston, W., Mudumbai, S., Hoo, G., Jackson, K. and Essiari, A. Certificate-based Access Control for Widely Distributed Resources. in Proc. 8th Usenix Security Symposium, 1999.

43.
Tuecke, S., "Grid Security Infrastructure (GSI) Roadmap," Grid Forum Draft draft-ggf-gsi-roadmap-02.txt, February 2001.

44.
Tuecke, S., Engert, D. and Thompson, M., "Internet X.509 Public Key Infrastructure Impersonation Certificate Profile," Internet Draft draft-ietf-pkix-impersonation-00.txt, February 2001.

45.
Tung, B., Wray, J., Medvinsky, A., Hur, M. and Trostle, J. Public Key Cryptography for Initial Authentication in Kerberos.

46.
Welch, V., Tuecke, S. and Engert, D., "GSS-API Extensions," Grid Forum Draft draft-ggf-gss-extensions-01.txt, February 2001.

47.
Wulf, W.A., Wang, C. and Kienzle, D., "A New Model of Security for Distributed Systems," Department of Computer Science, University of Virginia 1995.

C. Budget and Budget Explanation

D. Other Support of Investigators

E. Biographical Sketches

F. Description of Facilities and Resources

Security and Policy for Group Collaboration: A DOE Collaboratory Middleware Project
i

_1045999638.unknown

