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Computing Transition States and Mountain Passes
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Motivation

Given a continuously differentiable function f : R" — R and two

points z, and xp, determine a critical point £* on a minimal energy
path between z, and xy.

¢ A fundamental problem in biology, chemistry, and mathematics

o Collaborations with MPQC (SNL) and NWChem (PNNL)
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Mountain-Passes: Motivation

Minimax Characterization of a Mountain-Pass

7= inf {max {f[p(t)] : ¢ € 0, 1]}}
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Ingredients for a Mountain-Pass

o A closed set S that separates points x, and xp: The set S does

not contain x, or x; and every path from z, to x; meets .S

¢ The value of f on S is sufficiently high:

inf{f(z):z €S} > max{f(x,), f(zp)},

Questions

¢ Is there a critical point x* between z, and x;7

¢ What is the geometrical and eigenvalue structure of x*?
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Mountain-Pass Theorem

I'= {p = C[Ov 1] :p(O) = La, p(l) — xb}

Theorem. Ambrosetti and Rabinowitz [1973]

Assume that there are points z, and x; and a separating set S. If

inf{f(z):z €S} >max{f(x,), f(zp)}

and f satisfies the Palais-Smale condition, then

v = inf {max {f[p(t)} : t € [0. 1]}

is a minimax critical value of f.
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Palais-Smale Condition

The mapping f satisfies the Palais-Smale condition on C' if the
existence of a sequence {z} in C such that

lim f(zr) =7, dim Vf(zy) =0,

k— o0

implies that {x;} has a convergent subsequence.

o If f has compact level sets then f satisfies the PS condition.

o If f is bounded below and satisfies the PS condition, then f
achieves its minimum.

Note. The PS condition rules out critical points at infinity.
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Mountain-Passes

Definition. Hofer [1985]

A critical point z* is a mountain pass if for any sufficiently small
neighborhood N of x* the set

L(z7) =1z e N: flz) < f(z7)}

is non-empty and not path-connected.

o L(x*) is empty if and only if £* is a minimizer.
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Minimax Critical Points and Mountain-Passes

Conjecture. If x* is a minimax critical point then either

o x* is a limit point of minimizers, or

o x* is a mountain-pass with £(x*) not path-connected

For this function each minimax
critical point is a limit point of

minimizers.
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Geometry of Mountain-Passes: A non-degenerate case
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Geometry of Mountain-Passes: A degenerate case
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Eigenvalue Structure of Mountain-Passes: Quadratics

Theorem. The quadratic function ¢ : R" — R defined by
q(:z:):z}\ia:%, M < ... < A\,
k=1

has a mountain pass at £* = 0 if and only if

A1 <0< Ao,
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Transition States and Mountain Passes

Theorem. Assume that f : R" — R is twice continuously
differentiable in a neighborhood of the critical point x*. If the
Hessian matrix V2 f(z*) is nonsingular, then z* is a mountain pass

if and only if V2 f(z*) has precisely one negative eigenvalue.
Question. Are transition states of other types desirable?

The number of negative eigenvalues of the Hessian V?f(x*) is the
Morse index of the critical point.
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The Elastic String Algorithm

Compute

min {max {f[p(ts)] : 0 < k < m}},

where m = {to,...,t;,nr1} is a partition of [0, 1], and I',; is the set of
piecewise linear paths that connect x, with x; with

1
/ /()] dt < L.
0

o We only need to determine the breakpoints xp = p(tx).

¢ The constraint on the length of the path requires that

m
|2esr — anll < he, > hp=L.
k=0
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Determining Breakpoints

Version 1.

min{v(z) : ||vpr1 — xk|| < hg, 0 <k <m},

where

v(x) = max {f(@1),..., f(zm)}.

Version 2.

min{v: f(zx) <v, 1 <k <m,

|2k11 — 2kl < hi, 0 <Kk <m},
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The Elastic String Algorithms

¢ Choose the number m of breakpoints.

o Choose the bounds L and hy.

¢ Determine the breakpoints x1, ..., x,, for the path p,,.
o Let xf = max{f(zg):1 <k <m}.

¢ Increase m and update [.

Remark. In the computational experiments we used m € [10, 30],
and set L = 2||xp —x4|| and hy = L/(m+1). In most cases, m = 10.
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Convergence of the Elastic String Algorithm

Theorem. Any limit point of the paths {p,,} is a path p* that
crosses a critical point z* of f.

¢ We consider functions that are unbounded below, and those
with compact level sets

¢ There 1s no need to assume that the constraint L on the length
of the path is sufficiently large

o The main technical (nondegeneracy) assumption is that
flzg) =v=max{f(x;):1<j<m}, k=ky,... ki,

where [ is bounded independent of m
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Computational Experiments

Transition states

¢ Highly nonlinear
¢ f is bounded below and coercive

¢ A finite number of critical points

Henkelman, Johannesson, and Jénsson [2000].

Variational problems

¢ Mildly nonlinear

o f is unbounded below and |f| is coercive

¢ An infinite number of critical points

Chen, Zhou, and Ni [2000], Li and Zhou [2001,2002]
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Transition States: LEPS Potential

Typical results for m = 20 breakpoints
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Mountain-Passes: The Henon Problem (Structured Mesh)
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Mountain-Passes: The Henon Problem (Un-Structured Mesh)

slVu(s)|1? = 1llsllu(s)* ) ds
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Research Issues
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Eliminate nondegeneracy assumption in convergence result

Investigate the relationship to other minimax algorithms

Improvements to the optimization formulation

Develop multilevel techniques

Benchmark algorithms on applications: PNNL, SNL, ...

Transition states: Julius Jellinek and Al Wagner

Nanoscale modelling: Larry Curtiss

Investigate other areas of applicability: biology, ...
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