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Motivation

Given a continuously differentiable function f : Rn 7→ R and two
points xa and xb, determine a critical point x∗ on a minimal energy
path between xa and xb.

� A fundamental problem in biology, chemistry, and mathematics

� Collaborations with MPQC (SNL) and NWChem (PNNL)



Mountain-Passes: Motivation

Minimax Characterization of a Mountain-Pass

γ = inf
p∈Γ
{max {f [p(t)] : t ∈ [0, 1]}}



Ingredients for a Mountain-Pass

� A closed set S that separates points xa and xb: The set S does
not contain xa or xb and every path from xa to xb meets S

� The value of f on S is sufficiently high:

inf{f(x) : x ∈ S} > max{f(xa), f(xb)},

Questions

� Is there a critical point x∗ between xa and xb?

� What is the geometrical and eigenvalue structure of x∗?



Mountain-Pass Theorem

Γ ≡ {p ∈ C[0, 1] : p(0) = xa, p(1) = xb}

Theorem. Ambrosetti and Rabinowitz [1973]

Assume that there are points xa and xb and a separating set S. If

inf{f(x) : x ∈ S} > max{f(xa), f(xb)}

and f satisfies the Palais-Smale condition, then

γ = inf
p∈Γ
{max {f [p(t)] : t ∈ [0, 1]}}

is a minimax critical value of f .



Palais-Smale Condition

The mapping f satisfies the Palais-Smale condition on C if the
existence of a sequence {xk} in C such that

lim
k→∞

f(xk) = γ, lim
k→∞

∇f(xk) = 0,

implies that {xk} has a convergent subsequence.

� If f has compact level sets then f satisfies the PS condition.

� If f is bounded below and satisfies the PS condition, then f

achieves its minimum.

Note. The PS condition rules out critical points at infinity.



Mountain-Passes

Definition. Hofer [1985]

A critical point x∗ is a mountain pass if for any sufficiently small
neighborhood N of x∗ the set

L(x∗) = {x ∈ N : f(x) < f(x∗)}

is non-empty and not path-connected.

� L(x∗) is empty if and only if x∗ is a minimizer.



Minimax Critical Points and Mountain-Passes

Conjecture. If x∗ is a minimax critical point then either

� x∗ is a limit point of minimizers, or

� x∗ is a mountain-pass with L(x∗) not path-connected

For this function each minimax
critical point is a limit point of
minimizers.
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Geometry of Mountain-Passes: A non-degenerate case
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← f(x) = γ



Geometry of Mountain-Passes: A degenerate case
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Eigenvalue Structure of Mountain-Passes: Quadratics

Theorem. The quadratic function q : Rn 7→ R defined by

q(x) =
n∑

k=1

λix
2
i , λ1 ≤ . . . ≤ λn,

has a mountain pass at x∗ = 0 if and only if

λ1 < 0 < λ2.



Transition States and Mountain Passes

Theorem. Assume that f : Rn 7→ R is twice continuously
differentiable in a neighborhood of the critical point x∗. If the
Hessian matrix ∇2f(x∗) is nonsingular, then x∗ is a mountain pass
if and only if ∇2f(x∗) has precisely one negative eigenvalue.

Question. Are transition states of other types desirable?

The number of negative eigenvalues of the Hessian ∇2f(x∗) is the
Morse index of the critical point.



The Elastic String Algorithm

Compute
min
p∈Γπ

{max {f [p(tk)] : 0 ≤ k ≤ m}} ,

where π = {t0, . . . , tm+1} is a partition of [0, 1], and Γπ is the set of
piecewise linear paths that connect xa with xb with∫ 1

0

‖p′(t)‖ dt ≤ L.

� We only need to determine the breakpoints xk = p(tk).

� The constraint on the length of the path requires that

‖xk+1 − xk‖ ≤ hk,
m∑

k=0

hk = L.



Determining Breakpoints

Version 1.

min {ν(x) : ‖xk+1 − xk‖ ≤ hk, 0 ≤ k ≤ m} ,

where
ν(x) = max {f(x1), . . . , f(xm)} .

Version 2.

min {ν : f(xk) ≤ ν, 1 ≤ k ≤ m, ‖xk+1 − xk‖ ≤ hk, 0 ≤ k ≤ m} ,



The Elastic String Algorithms

� Choose the number m of breakpoints.

� Choose the bounds L and hk.

� Determine the breakpoints x1, . . . , xm for the path pm.

� Let x∗m = max{f(xk) : 1 ≤ k ≤ m}.

� Increase m and update l.

Remark. In the computational experiments we used m ∈ [10, 30],
and set L = 2‖xb−xa‖ and hk = L/(m+1). In most cases, m = 10.



Convergence of the Elastic String Algorithm

Theorem. Any limit point of the paths {pm} is a path p∗ that
crosses a critical point x∗ of f .

� We consider functions that are unbounded below, and those
with compact level sets

� There is no need to assume that the constraint L on the length
of the path is sufficiently large

� The main technical (nondegeneracy) assumption is that

f(xk) = ν = max {f(xj) : 1 ≤ j ≤ m} , k = k1, . . . , kl,

where l is bounded independent of m



Convergence of the Piecewise Linear Paths

Six-hump camel back function contours for m = 5, 10.



Convergence of the Piecewise Linear Paths

Six-hump camel back function contours for m = 15, 20.



Computational Experiments

Transition states

� Highly nonlinear

� f is bounded below and coercive

� A finite number of critical points

Henkelman, Jóhannesson, and Jónsson [2000].

Variational problems

� Mildly nonlinear

� f is unbounded below and |f | is coercive

� An infinite number of critical points

Chen, Zhou, and Ni [2000], Li and Zhou [2001,2002]



Transition States: LEPS Potential

Typical results for m = 20 breakpoints



Mountain-Passes: The Henon Problem (Structured Mesh)

∫
D

(
1
2‖∇u(s)‖2 − 1

4‖s‖u(s)4
)

ds



Mountain-Passes: The Henon Problem (Un-Structured Mesh)

∫
D

(
1
2‖∇u(s)‖2 − 1

4‖s‖u(s)4
)

ds



Research Issues

� Eliminate nondegeneracy assumption in convergence result

� Investigate the relationship to other minimax algorithms

� Improvements to the optimization formulation

� Develop multilevel techniques

� Benchmark algorithms on applications: PNNL, SNL, . . .

� Transition states: Julius Jellinek and Al Wagner

� Nanoscale modelling: Larry Curtiss

� Investigate other areas of applicability: biology, . . .


