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Abstract

Data sets that are being produced by today’s simulations, such as
the ones generated by DOE’s ASCI program, are too large for real-
time exploration and visualization. Therefore, new methods of vi-
sualizing these data sets need to be investigated. We present a
method that combines isosurface representations of different res-
olutions into a seamless solution, virtually free of cracks and over-
laps. This technique combines existing isosurface generation al-
gorithms and wavelet theory to produce a real-time solution to
multiple-resolution isosurfaces.
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1 Introduction

The extraction of polygonal isosurfaces is a widely used visualiza-
tion method for scalar fields in volumetric data. It is especially use-
ful for visualizing data sets containing objects having well-defined
boundaries, where lighting and shading of the polygonal surfaces
enhance the 3D structures. A common algorithm used for isosur-
face extraction is marching cubes [8]. This algorithm traverses all
cells of the volume and generates the polygonal isosurface by tri-
linear interpolation along the edges of the cells. The algorithm is
trivially parallelizable, and we have been able to perform isosur-
face extraction, using a parallel implementation that is part of the
Visualization Toolkit(VTK) [18], of larger data sets (10243 regular
grids) in real time [7]. Even though the production of the polygonal
surfaces is done in a reasonable time, the number of polygons gen-
erated by these algorithms quickly exceeds the capabilities of the
rendering hardware.

Isosurfaces are also a commonly used visualization technique
within virtual reality environments because they make full use of
the three-dimensional space and the creation of the surface is fast
enough for real-time exploration of moderately sized data sets [15,
17]. As data sets grow larger, however, it is becoming difficult to
use virtual environments for investigation. Again this difficulty is
due not to the generation time of the surfaces, but to the number
of polygons generated. One can decimate the resulting surface, but
this approach adds to the computation time of the final surface and
is not acceptable in a real-time environment. Therefore, one must
explore methods to calculate isosurfaces with polygon counts that
are reasonably sized for real-time rendering.

This paper describes a technique that enables the exploratory
scientific visualization of large data sets using isosurfaces on a
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wide variety of machines, from low-end graphics workstations to
high-end virtual reality systems. This technique allows the user to
modify the isosurface threshold interactively, as well as reduce the
number of triangles generated so that they can be displayed in real
time. The user can also choose a region of interest that is displayed
in high resolution while the rest of the data set is displayed at a
lower resolution. The ability to show both high- and low-resolution
isosurfaces at the same time allows the user to maintain real-time
frame rates from the rendering engine, look at a particular region
of the data in full detail, and have a sense of the global context of
the data set as well. The technique uses the well-studied wavelet
transform to construct multiple resolutions of rectilinear data while
introducing minimum error. In the following sections of the pa-
per we show how wavelet coefficients can be manipulated at the
boundary between two resolutions to ensure continuity of the func-
tion, and we present an efficient technique that ensures continuity
of the isosurface generated. The isosurface has no overlap, but in
the worst case hairline cracks may appear at multiresolution bound-
aries. However, these cracks are insignificant and, we believe, do
not hinder the process of understandingand visualization of the data
set.

2 Background

Several attempts have been made to reduce the number of triangles
generated by the marching cubes algorithm. The most notable is
the decimation algorithm by Schroeder et al. [19]. A full high-
resolution isosurface generated by marching cubes is substituted
with a simpler mesh generated with only a subset of the original
vertices. This approach is too computationally expensive, however,
because a large number of triangles are first generated, only to be
eliminated at a later stage.

Several adaptive marching cube algorithms have been pro-
posed [21, 10, 20, 11]. These techniques traverse all voxels and
at least partially extract the isosurface for each voxel. Neighbor-
ing voxels are then merged if the isosurface is found to be similar.
However, these techniques are inappropriate for exploratory scien-
tific visualization because merging of cells is directly linked to the
isosurface threshold; that is, at least a partial full resolution iso-
surface is extracted and the merging process repeated every time
the user modifies the isovalue. Moreover, additional memory is re-
quired to store the multiple resolutions.

The benefits of octrees for faster reconstruction of isosurfaces
for regular volume data was first recognized by Wilhelms and
Gelder [26]. The minimum and maximum density value of the sub-
tree rooted at every inner node are stored. Large branchesof the vol-
ume that do not intersect the isosurface can thus be skipped. West-
ermann et al. [25] used average pyramid octrees for exploratory
visualization in which the level of refinement of a particular inner
node is determined by a user-defined focal point and radius of in-
terest. Their technique requires neighboring cells to vary by not
more than one level of resolution. Extra processing is required to
maintain continuity of the data set at multiresolution boundaries.
The technique generatesadditional polygons to fill in cracks at mul-
tiresolution boundaries. Moreover, additional memory is required
to store the full octree.

Wavelet-based techniques are commonly used for extracting
multiresolution representations of a function. Mallat [9] proposed
a framework for multiresolution decomposition of a measurable,
square-integrable, one-dimensional functionf(x). The model is
extensible to higher dimensions. An approximation operatorA 2j is
defined that projectsf(x) at the resolution2j. Among all approx-
imated functions at resolution2j , A2j f(x) is the function most
similar to f(x). More formally, assumingV2j to be the set of
all possible approximations at the resolution2j of all measurable,



square-integrable one-dimensional functions, this can be expressed
as follows:

8g(x) 2 V2j ; kg(x)� f(x)k � kA2j f(x)� f(x)k (1)

The multiresolution transform is implemented efficiently by
the “cascade” algorithm, which successively decomposes a sig-
nal A2j+1 f(x) to a coarser signalA2j f(x) and a “detail” sig-
nal D2jf(x) (also called wavelet coefficients). The wavelet co-
efficients store the difference between the two resolutions and are
computed by projecting the signal onto orthogonal wavelet basis
functions. This transform is fully reversible and requires no ad-
ditional storage. The cascade algorithm runs in linear time with
respect to the number of samples of the original discrete signal.

In volume visualization only finite signals are considered, while
Mallat’s multiresolution transform is designed for infinite signals.
Using symmetric or antisymmetric wavelet basis functions allows
for (anti)symmetric extensions of the function at the boundary.
Therefore, it is desirable for the wavelet basis functions to be
(anti)symmetric when the signal is defined only over a finite inter-
val. It has been proven that compactly supported, (anti)symmetric,
orthogonal wavelet basis functions of degree greater than zero can-
not be constructed [1]. On the other hand, relaxing the orthog-
onality condition allows the construction of smooth, symmetric,
and compactly supported biorthogonal wavelets. The error intro-
duced by performing a multiresolution transform using biorthogo-
nal wavelet basis functions is within a small constant of the mini-
mum possible error (as described in Equation 1) [1]. Moreover, ex-
tremely efficient, in-place computation of the biorthogonal wavelet
transform is possible using the lifting scheme [23].

Several researchers have used wavelets to obtain multiple resolu-
tions of three-dimensional rectilinear data [12, 6, 24, 16]. However,
none of these techniques allow the user to specify a region of inter-
est or permit multiple resolutions in different regions of the data at
the same time. Gross et al. [4] use wavelet decomposition to adap-
tively generate polygonal data representing a terrain from a height
field. They also modify wavelet coefficients to define a region of
interest. However, extra processing is involved, requiring lookup
into a table with 625 entries to maintain continuity of the polygonal
mesh at multiresolution boundaries.

3 Theory

In this section we first justify our choice of subsampling technique
(Section 3.1). We then show how we modify wavelet coefficients
to ensure continuity of the function at multiresolution boundaries
(Section 3.2). We conclude this section by describing an efficient
technique of eliminating cracks in the isosurface at multiresolution
boundaries (Section 3.3).

3.1 Subsampling Technique - Wavelet Decompo-
sition Using Linear Biorthogonal Basis

The marching cubes algorithm assumes that the scalar field is piece-
wise linear along the cell edges; the intersection of the isosurface
along an edge of the data set is determined by linearly interpolating
between the two boundary data points of the edge. Linear wavelet
basis functions have one vanishing moment. Hence, if one iteration
of the cascade algorithm is performed using linear wavelet bases on
a linear function, the function is represented exactly. When higher-
order wavelet basis functions are used, even higher-order functions
can be represented exactly. However, higher-order basis functions
have a wider support, thus increasing the computational cost of the
multiresolution transform. Therefore, linear basis functions are best
suited to represent piecewise linear functions. Hereafter we refer to
decomposition of a signal at resolution2j into a signal at resolution

Table 1: Error introduced by the three subsampling techniques.
Note that the range of data values in this data set is 0 to 255.

Subsampling Technique L1 Er-
ror

RMS
Error

Average pyramid with box filter 15.5254 34.9054
Accepting every eighth sample 13.0492 33.2336
Three iterations of the forward wavelet
transform

10.6413 27.0047

2j�1 and wavelet coefficients using the lifting scheme with linear
biorthogonal wavelet basis functions as one iteration of theforward
wavelet transform. A reconstruction of a signal from a coarser res-
olution signal and wavelet coefficients using the same algorithm is
referred to as thereverse wavelet transform.

Figure 1 shows the effect of subsampling using three techniques.
An isosurface is extracted after three levels of subsampling of the
iron protein data set1. Note that after this subsamplingprocess, only
0.195% of the data is retained. Figure 1(a) is obtained by averaging
every8� 8 � 8 subgrid, which can also be considered as three it-
erations of the cascade algorithm using Haar wavelets [5]. Clearly,
there is more severe loss of detail here than with the other two meth-
ods. This is because the Haar wavelet basis functions have zero
vanishing moments and are thus suited to represent only piecewise
constant functions, whereas the marching cubes algorithm assumes
the scalar field to be piecewise linear. The naive strategy of skip-
ping over samples may cause considerable aliasing, as seen in Fig-
ure 1(b). Table 1 gives the L1 and the root mean square (RMS) error
introduced by the three methods of subsampling. All subsampled
data sets were first supersampled back to the original resolution by
trilinear interpolation and then compared against the original iron
protein data set. Again, this is justified because the isosurface ex-
traction algorithm assumes the scalar field to be piecewise linear
along its edges.

3.2 Ensuring Function Continuity

In order to ensure continuity of the isosurfacegenerated, it is imper-
ative to ensure continuity of the function at the boundary between
two resolutions. We demonstrate this in two dimensions with the
help of Figure 2. We need to ensureu1 = u2, d1 = d2, and
m = u1+u2

2
, again assuming piecewise linearity of the function.

If the subsampling strategy used is to skip over samples, as was
done in Figure 1(b), the function will always match at the data sam-
ples common to the two resolutions (u1 = u2 andd1 = d2 in
Figure 2), whereas other samples at the higher resolution (m in
Figure 2) will need to be explicitly recalculated by linearly interpo-
lating the lower-resolution values. This was done in [20]. If average
pyramids are used as the subsampling strategy, as was done in Fig-
ure 1(a), the function is not guaranteed to be continuous even at the
data points shared between the two resolutions. In [25], data values
at the coarser level are modified to be equal to the corresponding
data values at the finer level (u1 is set tou2 andd1 is set tod2 in
Figure 2). Other samples at the finer level are recalculated by linear
interpolation (m is set tou1+u2

2
in Figure 2).

We use a linear biorthogonal wavelet transform implemented by
the lifting scheme [23] to obtain multiple resolutions of our data
set. The lifting scheme does an in-place computation of this trans-
form and is composed of two stages:predictandupdate. During
the predictstage of the forward wavelet transform, in each itera-
tion, all odd-indexed samples are replaced by wavelet coefficients.

1Available with the standard VTK data distribution courtesy Kitware
Inc. 683 regular grid
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Figure 1: Isosurface of iron protein data set with a threshold of 127;
(a), (b), and (c) are subsampled by a factor of eight in all three di-
mensions. (a) Data set subsampled using average pyramid and box
filter; (b) data subsampled by skipping over every eight samples;
(c) data subsampled by applying linear, biorthogonal wavelet trans-
form three times; (d) the original data set.

The opposite occurs during thepredictstage of the reverse wavelet
transform. During theupdatestage, all even-indexed samples are
transformed to represent the function at a lower or higher resolu-
tion in the forward or reverse wavelet transform, respectively. For
example, in Figure 2, the low-resolution region is generated by two
iterations, and the high-resolution region by one iteration, of the
forward wavelet transform.

When using linear basis functions while performing the wavelet
transform, a wavelet coefficient at a particular pointx gives an in-
dication of how far the function is from being linear atx. A wavelet
coefficient of zero atx indicates that the function is perfectly lin-
ear atx; so if a reverse wavelet transform is done to transform the
function one level of resolution higher, the data value atx will be a
linear interpolation of its neighboring data values at the higher res-
olution. This is illustrated for the one-dimensional case in Figure 3.

When using linear basis functions, the value by which an even-
indexed sample is altered during theupdatestage is a function of
only its surrounding wavelet coefficients. Therefore, in one dimen-
sion, if the two neighboring wavelet coefficients of a data value at
a pointx are zero, the data value remains unchanged when trans-
formed one resolution higher by performing one iteration of the
reverse wavelet transform. This is illustrated in Figure 4. Similarly,
in two dimensions, 8 wavelet coefficientsupdatea data point, while
in three dimensions the count is 26.

The observations of the preceding two paragraphs give us a
framework for ensuring continuity of the function at the bound-
ary between two resolutions. For the following discussion, refer to
Figure 5. Assume for clarity of explanation that the data set isn

dimensional (n = 1; 2; 3) and of resolutions in all n dimensions.
Let l andh be user-definedn-dimensional points defining ann-
dimensional rectangular region that forms a boundary to the high
resolution region. Assume that the user sets the low-resolution re-
gion to one-level subsampling (one iteration of the forward wavelet

u1 u2

m
High

d1 d2

Low

Data point
Wavelet coefficient

Figure 2: Multiresolution boundary
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Linear biorthogonal wavelet
transform using lifting scheme

h1 h2

l1 l2c

m

Data values
Wavelet coefficient

c = 0  <=>  m = (h1+h2)/2

Figure 3: A zero wavelet coefficient at a pointx implies that the
function is linear atx.

transform achieves this) and the high-resolution region at the res-
olution of the original data set (the highest resolution). Note that
0 <= li < hi < s; i = 0; 1; ::n� 1. Also note thatli and(s�hi)
need to be even so that they may bound the one-level subsampled
low-resolution regions. Here is the sequence of steps required to
generate a seamless multiresolution function in this particular ex-
ample:

1. Perform one iteration of the forward wavelet transform to the
original data set to bring the entire data set one level of reso-
lution down.

2. Modify wavelet coefficients to ensure continuity. Assume that
wi is the position of a wavelet coefficientW in thei th dimen-
sion. SetW = 0 if wi <= li + cw or wi >= hi � cw,
wherecw is called thecushionwidth. This basically nulli-
fies all wavelet coefficients inside the low-resolution region
and inside a cushion at the boundary of the high-resolution
region. This is illustrated in two dimensions in Figure 5. The
cushion widthcw is half the width of a low-resolution voxel,
which in the above example is 2, and socw is 1.

3. Do one iteration of a reverse wavelet transform.

Setting wavelet coefficients to zero as described above ensures
that the data values in the low-resolution region do not changewhile
doing the reverse wavelet transform (step 3 above). Also all other
data values in this region are forced to be linearly interpolated from
their neighboring data values and that includes the data values at
the boundary between the two resolutions. This ensures continuity
of the function.

In the above example, the two resolutions varied by only one
level. However, this is not a requirement. The two resolutions can
vary by arbitrary amounts as long as the cushion is set to half the
width of the low-resolution voxel. This guarantees that at every
iteration of the reverse wavelet transform, wavelet coefficients on
and outside the boundary of the high-resolution region as well as
those that line the boundary inside the high-resolution region are
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Figure 4: A data value remains unchanged between two resolutions
if its surrounding wavelet coefficients are zero.
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Figure 5: Smooth transition between two resolutions with the help
of a cushion

zero. This, in turn, ensures that after the reverse wavelet trans-
form, the data values at the coarser resolution on and outside the
high-resolution boundary are unchanged. Also, the new data val-
ues generated on and outside the high-resolution boundary during
thepredictstage of the lifting scheme are guaranteed to be linearly
interpolated from the neighboring data values at the user-defined
low-resolution level.

What this technique effectively does is create a cushion of vox-
els at the boundary that forms a smooth transition between the two
resolutions; one side of the cushion is at a high resolution, while
the other side is at a low resolution.

A More Efficient Algorithm

The algorithm described above is a little wasteful. A reverse
wavelet transform is applied to the low-resolution region even
though the data values there are unaffected by this transform. How-
ever, a simple improvement to the algorithm can eliminate this
waste. Here is the modified algorithm:

1. Transform the entire data set to the user-specified low resolu-
tion.

2. Set all wavelet coefficients in the cushion region (See Fig-
ure 5) to zero.

3. Apply the reverse wavelet transform only to the high-
resolution region (which includes the cushion) to the level
specified by the user.

This not only reduces the computational cost of transforming be-
tween the two resolutions but also reduces the amount of storage
required to store the wavelet coefficients that are set to zero. It is
important to have the ability to recover the data set because the user
should be able to move the high-resolution region as well as change

the two resolution levels. We now need to store only the wavelet
coefficients in the cushion region in order to recover the data set.

3.3 Ensuring Isosurface Continuity

In Section 3.2, we described a method to ensure function continu-
ity in a linear sense at a multiresolution boundary. When we apply
the marching cubes algorithm to such a function in two dimensions
(called marching squares), the resulting contour lines generated are
continuous. Figure 6 illustrates this. However, this is not generally
true in the three-dimensional case. In the marching cubes algo-
rithm, the function is assumed to be linear only along the edges.
The intersection of the isosurface is calculated only along the edges
of the cubical voxels. Adjacent intersection points are connected to
form contours, which are then triangulated to give isosurface geom-
etry. Note that if the function were trilinearly interpolated at every
point in the volume, as is done in volume rendering [2], or even
bilinearly interpolated along the faces of the data set, the resulting
isosurfacewould be continuous along the multiresolution boundary,
given that the scalar field is continuous.

Figure 6: In two dimensions, continuity of the function ensures con-
tinuity of the isolines. The white contour lines are generated from a
region that is two levels of resolution lower than the high-resolution
region from which the yellow contour lines are generated. The data
set was generated as a two-dimensional array of random numbers.

Consider a face of a low-resolution cube at a multiresolution
boundary. Assuming the scalar value at a vertex point to be its third
dimension, the four points at the vertices of this face may be non-
planar. In this case, the approximation of the scalar field used by
marching cubes (as described in the previous paragraph) is faceted.
Assume that all wavelet coefficients surrounding the vertices are
set to zero, as described in Section 3.2. Then, the points introduced
along the edges of the face during thepredictstage of the reverse
wavelet transform do not change the points of intersection of the
isosurface with that face. This is because the new data points in-
troduced along the edges are linearly interpolated from the edge
points. However, the scalar value at the center of the face, which is
an average of the scalar values at the four boundary vertices, may
not lie on the faceted scalar field approximation. The different res-
olution isolines thus generated will be coincident along the edges
of the face but not inside the face, as was observed in [25]. This
results in cracks at the multiresolution boundary, as illustrated in
Figure 7.

Fortunately we found an efficient and easy-to-implement way
around this problem. Refer to Figure 8(a). Consider a nonplanar
multiresolution boundary faceF with verticesv1; v2; v3; v4. As-
sume the isosurface intersectsF along adjacent edges,v 1v2 and
v2v3. This is equivalent to saying that the approximated scalar field
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Figure 7: A crack is formed in spite of the function being continu-
ous at the boundary if the four vertices at a face are non-coplanar:
(a) is a face at a boundary where the resolutions differ by one level.
(b) and (c) give the surface plots of the boundary face at low and
high resolutions, respectively, as well as a contour line shown in
red with an isovalue of 6.5. Note the fold in the low-resolution sur-
face plot. The two surface plots differ at the center at the cell. The
contour lines coincide along the edges of the face but not inside it.

has a fold along the diagonalv1v3. After nullifying the wavelet
coefficients in the cushion and doing one level of a reverse wavelet
transform, we go up by one resolution. We then modify the scalar
value at center ofF , c, to lie along the fold, that is, we set its value
to v1+v3

2
.

Refer now to Figure 8(b) and (c). Assume that the isosurface
passes though opposite edges ofF , v 1v2, andv4v3. After going
up one resolution, the scalar values at the center ofF may have
to be adjusted so that the isolines generated coincide with the low-
resolution isoline onF . This is done by pulling the scalar value at
the center ofF up or down, until the new, high-resolution isoline
bumps against the low-resolution isoline. In more detail, this is
accomplished as follows:

1. Calculate the intersection pointp of the low-resolution isoline
with the edgem1m2 that connects the midpoints of the other
two edges (v4v1 andv2v3).

2. Set the scalar value at the center ofF , c, so that the inter-
section of the high-resolution isosurface withF remains un-
changed alongm1m2 (i.e., the high-resolution isoline passes
throughp).

Assuming that the isovalue threshold isiso, v(x) is the scalar value
at locationx, and referring to Figure 8(b) and (c), the scalar value
atc is changed according to the following pseudocode:

/* calculate e = scalar value at p */

let e = 1
2
� f

iso�v(v4)

v(v3)�v(v4)
+

iso�v(v1)

v(v2)�v(v1)
g

if (e > 0:5) /* Figure 8(b) */
let e = 2� e � 1

let v(c) =
iso�e�v(m2)

1�e

else /* Figure 8(c) */
let e = 2� e

let v(c) =
iso�v(m1)

e
+ v(m1)

endif

v1 v2

v4 v3

c

v1 v2

v4 v3

c

v1 v2

v4 v3

c

c = (v 1 + v 3)/2

(a)

(b)

v1 v2

v4 v3

c
m1 m2

v1 v2

v4 v3

c
m1 m2p p

(c)

Isosurface with threshold iso

Figure 8: Modifying the center value of a boundary face to en-
sure continuity of the isosurface. Note that rotationally symmetric
cases have been omitted: (a) isosurface intersects adjacent edges of
boundary face; (b) and (c) isosurface intersects opposite edges.

Refer to Figure 9. In this case the isoline passing through op-
posite edges ofF intersects with two high-resolution edges of the



data set onF . There can be instances in which it is impossible to
adjust the scalar value atc so that the high-resolution isoline passes
through bothp andq. In our implementation, we adjust the scalar
value atc so that the isoline passes throughp. This guarantees that
the two isolines at different resolutions coincide along at least half
the faceF (alongpr in Figure 9). Hairline cracks may appear on the
other half. Figure 10 shows such a crack. We have experimentally
found that only approximately 4.19% of multiresolution boundary
faces, which intersect the isosurface, develop these cracks; the max-
imum area of the triangle forming the crack is 2.84% of the area of
the low-resolution boundary face, while the average crack area is
1.22%. We believe that these cracks do not hinder the visualization
of the data set.

p

q

c
p

q

c

(a) (b)

High−resolution isoline
Low−resolution isoline
High−resolution faces

r r

m2m1 m1 m2

Figure 9: (a) A low-resolution isoline may intersect two high-
resolution edges. (b) Our correction forces the high-resolution iso-
line to coincide with one intersection point(p) but not both. Thin
cracks may result.

(a) (b)

Figure 10: An example of a minute crack generated in the iron
protein data set. (a) The global view showing the boundary of the
region where the crack exits as a green rectangle; (b) the crack mag-
nified.

Note that the modification of the data set introduced above is
easily reversible. Before performing any iteration of the forward
wavelet transform involving only the high-resolution region, the
scalar values at the centers of all faces along multiresolution bound-
aries need to be restored. This is done by simply setting the scalar
value at the center of a face to the average of the scalar values at its
four vertices.

Our technique fills cracks by modifying sparse data values along
multiresolution boundaries so that the high-resolution edges are
forced to coincide with the corresponding low-resolution edges.
The technique is efficient because the change at a particular ver-
tex is a function of only its immediate neighbors and the current
isovalue. The change is also trivially reversible. Figure 11 shows

isosurface extraction with and without this correction applied to the
boundaries.

(a) (b)

Figure 11: Fixing the cracks by modifying data points at bound-
aries. The yellow region is the isosurface generated at the highest
resolution; the white region is the isosurface generated from down
sampling by two levels: (a) without the correction, cracks visible
(b) With the correction, no cracks.

Marching Cubes Ambiguities

Up to now, we have discussed techniques to ensure continuity of
the isosurface. Note that the isosurfaces of the different resolu-
tion regions are extracted with separate calls to the marching cubes
algorithm. An ambiguous face [13] may exist at a multiresolu-
tion boundary. In order to ensure topological consistency across
the boundary, the same disambiguation choice needs to be made at
neighboring multiresolution cells. We use the so-called single-entry
cubical table marching cubes technique [14]. In this technique, an
arbitrary choice is used at the ambiguous face. However, neigh-
boring cells produce the same contours at the common face, thus
maintaining topological consistency.

4 Implementation

We built our system using the Visualization Toolkit (VTK) [18],
which is free software.2 The code is written using C++. Isosur-
face extraction is done using a VTK function called synchronized
templates, which is an improved version of standard single-entry
cubical marching cubes. Therefore, marching cubes ambiguities at
multiresolution boundaries, as discussed in Section 3.2, are taken
care of.

We built our biorthogonal wavelet transform functions starting
with free software3 called LIFTPACK [3]. LIFTPACK supports
one- and two-dimensional biorthogonal wavelet transforms of ar-
bitrary order using the lifting scheme. We extended the transform
to three dimensions and reduced its computational requirement, as
explained below.

LIFTPACK uses the so-called non standard technique [22] to
construct two-dimensional wavelet bases from one-dimensional ba-
sis functions. Assuming1D Transform is a function performing
one iteration of a forward wavelet transform in one dimension, one
can express a forward wavelet transform in two dimensions, using
the non standard technique, algorithmically as follows:

for each row r

1D Transform(r)
endfor
for each column c

1D Transform(c)
endfor

2Available at http://www.kitware.com/vtk.html
3Available at http://www.cs.sc.edu/�fernande/liftpack/



Note that in the algorithm, the wavelet coefficients generated af-
ter applying the transform to the rows are again subjected to a for-
ward wavelet transform when iterating over the columns. We mod-
ified the second loop of the algorithm so that1D Transform is
not applied to columns containing only wavelet coefficients (i.e., in
two dimensions, we skipped over every alternate column). If the
data set size iss � s, the number of data elements that are pro-
cessed by1D Transform reduces from2s2 to 1:5s2: a factor of
25%. This is illustrated in Figure 12. Note that this modification
generates the same multiresolution data sets as the original algo-
rithm. Also, the effect of null wavelet coefficients as discussed in
Section 3.2 remains the same. The following pseudocodedescribes
the modified algorithm in two dimensions:

for each row r

1D Transform(r)
endfor
for each alternate column c

1D Transform(c)
endfor

Note that the computation savings are even greater when going
up to three dimensions.1D Transform is applied to only one-
fourth of the rows in the third dimension. Consequently, the number
of data elements processed by1D Transform, reduces from3s 3

to 1:75s3, a factor of 41.7%.

These are not transformed again

Data Point
Wavelet coefficient

Figure 12: The data set after applying1D Transform to all the
rows. The columns composed of only wavelet coefficients need not
be further processed by1D Transform.

Also note that the multidimensional wavelet transform as de-
scribed in the above pseudocode is easily parallelizable, since each
iteration of the loop can be independently executed.

Region of Interest

The user can specify a rectangular region defining a region of inter-
est as well as the resolution level of the two regions. Assumel andh
are the user-specified low- and high-resolution levels, respectively,
that is, the number of levels these regions are subsampled (note that
blog2 sc � l � h). The initialization steps are as follows:

1. Perform l iterations of the forward wavelet transform on
the full data set to bring it down to the user-specified low-
resolution level.

2. Store wavelet coefficients in the cushion region, and then nul-
lify them.

3. Perform(l � h) iterations of the reverse wavelet transform
only on the high-resolution region. Modify data points at the
center of boundary faces after each iteration, as described in
Section 3.2.

4. Perform isosurface extraction. The different resolution re-
gions are processedby separate calls to the synchronized tem-
plates function.

The resolution levels can be changed by the user too. Assuming
l0 andh0 are the new low and high resolutions, respectively, the
following steps are performed:

1. Perform(l � h) iterations of the forward wavelet transform
on the old high-resolution region, restoring data values at the
center of boundary faces before each iteration, as described in
Section 3.2.

2. Restore the wavelet coefficients in the old cushion.

3. if (l0 > l)
Perform(l0 � l) iterations of the forward wavelet trans-
form on the full data set

.

else if (l0 < l)
Perform(l � l0) iterations of the reverse wavelet trans-
form on the full data set

.

This step brings the entire data set to the new low-resolution
l0.

4. Store the wavelet coefficients in the new cushion and then nul-
lify them.

5. Perform(l0 � h0) iterations of the reverse wavelet transform
only on the high-resolution region. Modify data points at the
center of boundary faces after each iteration, as described in
Section 3.2.

6. Perform isosurface extraction. The different-resolution re-
gions are processedby separate calls to the synchronized tem-
plates algorithm.

The region of interest can be interactively moved and resized.
The steps involved for this are same as above, skipping step 3 and
replacingl0 by l andh0 by h in step 5. We recognize that for step 5
in this situation, the isosurface extraction needs to be done only
in a limited number of voxels. IfH andH 0 are the old and new
high-resolution regions andC andC 0 are the old and new cushions,
isosurface extraction need be done only in the region(H �H 0) [
(H 0 �H) [C [C 0. We haven’t implemented this feature, but we
foresee a reduction in the isosurface extraction times in Table 3.

5 Results

In this section we give timings and output images of our imple-
mentation on different machines. Timings are taken on a two-
processor SGI octaneTM with an MXI graphics board and 256 MB
RAM(SG), a two-processor Intel PIIITM with a 32 MB Matrox
Millennium 400 video card and 512 MB RAM, running Windows
NTTM (NT) and a two-processor Intel PIIITM with a 16 MB Ma-
trox Millennium 400 video card and 256 MB RAM, running Red
Hat LinuxTM (LX). We haven’t parallelized our implementation of
the wavelet transform at this stage, and the code is not optimized.

We show results from the Rayleigh-Taylor data set,4 which is
a 128 � 512 � 128 regular grid. Images at different resolutions
are shown in Figure 13 and timings listed in Table 2. We ob-
serve that the wavelet transform time increases only logarithmi-
cally with number of levels. This is as expected because the num-
ber of samples to be processed reduces by one-eighth after each
iteration. Note that the wavelet transform processes the full high-
resolution data and therefore takes several seconds at startup, as
shown in Table 2. However, this can be considered a preprocessing
step. A change in the regions-of-interest box requires a multireso-
lution transform only of the high-resolution region. These timings
are shown in Table 3.

4The Rayleigh-Taylor data used in this work was in part generated by
the DOE-supported ASCI/Alliance Center for Astrophysical Thermonu-
clear Flashes at the University of Chicago.



Table 2: Rayleigh-Taylor data set at different resolutions. The
wavelet transform times indicated are those needed to transform
the full-resolution data set to the low resolution specified, and is
required only at startup.

Res. Polygon
Count

Wavelet
Transform
Time (sec)

Isosurface
Extraction
time (sec)

Frame
Rendering
Time (sec)

SG NT LX SG NT LX SG NT LX
full 307482 N/A N/A N/A 15.1 7.53 4.00 0.52 1.80 1.89
half 76714 6.28 11.6 2.28 1.97 0.95 0.47 0.13 0.49 0.58
quarter18234 7.13 13.0 2.61 0.30 0.16 0.07 .037 0.14 0.19
eighth 3612 7.21 13.2 2.66 0.06 0.03 0.01 .015 .063 .071

We now show images with a region of interest specified. In Fig-
ure 14, the region in the red box is the user-specifiedhigh-resolution
region. This box can be interactively moved and resized by the user.
The levels of the two resolutions can also be interactively changed.

Refer to Table 3. Every time the region of interest or the res-
olution level(s) are modified, wavelet transforms (which includes
modification of the wavelet coefficients) as well as isosurface ex-
traction are performed. These steps take only a few seconds even
with a single-threaded implementation. On the other hand, we get
big wins on frame rates. Note that the isosurfaces generated are
seamless between the two resolutions. Figure 15 shows a closeup
of multiresolution boundaries.

Table 3: Rayleigh-Taylor data set with regions of interest. The
above wavelet transform and isosurface extraction times are those
that occur when the region of interest box is moved or resized. Im-
ages of the region of interest box are shown in Figure 14.

High
: Low

Polygon
Count

Wavelet
Transform
Time (sec)

Isosurface
Extraction
Time (sec)

Frame
Rendering
Time (sec)

SG NT LX SG NT LX SG NT LX
0:1
14(a)

98896 0.23 0.77 0.13 2.26 1.20 0.58 0.18 0.63 0.98

0:2
14(b)

49986 0.29 1.06 0.17 0.66 0.52 0.19 0.09 0.32 0.50

0:3
14(c)

43766 0.56 1.53 0.22 0.46 0.49 0.15 0.08 0.27 0.44

6 Conclusions and Future Work

We have demonstrated an efficient method for displaying seamless
multiresolution isosurfaces interactively. The method makes use
of the power of wavelet theory to generate multiple resolutions of
the data while introducing nearly minimal error, thus allowing ex-
ploratory scientific visualization on a wide variety of machines. The
multiresolution transform we use guarantees that the multiresolu-
tion scalar field generated isC 0 continuous.

Future work includes an inspection of wavelet coefficients at dif-
ferent regions of the data set, using them as a measure of the reso-
lution needed to faithfully represent the data and thus providing a
framework for generation of adaptive isosurfaces. Regions of inter-
est may also be definedbased on the user gaze within a environment

(a) (b)

(c) (d)

Figure 13: Isosurface of Rayleigh-Taylor data at multiple resolu-
tions: (a) full resolution; (b) one-level subsampling (87.5% reduc-
tion); (c) Two level subsampling (98.44% reduction); (d) three level
subsampling (99.80% reduction).

(a) (b)

(c) (d)

Figure 14: Isosurface of Rayleigh-Taylor data with region of in-
terest specified as a red box: (a) high:full resolution, low:half
resolution; (b) high:full resolution, low:quarter resolution; (c)
high:full resolution, low:one-eighth resolution (d) high:half reso-
lution, low:quarter resolution.



Figure 15: Seamless multi resolution boundaries.

where such information is already being collected, such as in a vir-
tual environment. In the area of remote visualization, we plan to
investigate progressive transmission of multiresolution isosurfaces
using wavelet-based multiresolution decomposition.
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