Appeared as: T. L. Disz, M. E. Papka, M. Pellegrino, and R. Stevens, "Sharing Visualization Experience:
Remote Virtual Environments,” In M. Chen, P. Townsend, J. A. Vince, editors "High Performance
Computing for Computer Graphics and Visualization," Proceedings of the International Workshop on t
Performance Computing for Computer Graphics and Visualization, pages 217-237, Springer-Verlag, 1

Sharing Visualization Experiences
among Remote Virtual Environments

Terrence L. Disz, Michael E. Papka, Michael Pellegrino, and Rick Stevens
Mathematics and Computer Science Division, Argonne National Laboratory
Argonne, IL 60439 USA
{disz,papka}@mcs.anl.gov

Abstract

Virtual reality has become an increasingly familiar part of the sci-
ence of visualization and communication of information. This, combined
with the increase in connectivity of remote sites via high-speed networks,
allows for the development of a collaborative distributed virtual environ-
ment. Such an environment enables the development of supercomputer
simulations with virtual reality visualizations that can be displayed at
multiple sites, with each site interacting, viewing, and communicating
about the results being discovered.

The early results of an experimental collaborative virtual reality envi-
ronment are discussed in this paper. The issues that need to be addressed
in the implementation, as well as preliminary results are covered. Also
provided are a discussion of plans and a generalized application program-

mers interface for CAVE to CAVE will be provided.

1 Introduction

Sharing a visualization experience among remote virtual environments is a new
area of research within the field of virtual reality (VR). The major work that
has been domne in this area has been done mainly in the area of networked
nonimmersive workstation-based VR [7, 10]. In this paper we discuss the is-
sues encountered when developing a software library used to connect several
CAVE Automatic Virtual Environments (CAVEs) together. When we refer
to “CAVE” during the course of this paper we mean the CAVE simulator,
the ImmersaDesk, and the actual CAVE. We discuss simple test cases and
measurements and present an application programmers interface (API) for de-
velopers of CAVE applications to use in joining multi-CAVE sessions. This
work is part of a larger project (LabSpace) to implement distributed collab-
orative workspaces, with multiple CAVE interaction as just one of the many
communication modalities [14].

2 CAVE

The CAVE is a virtual reality environment originally developed at the Elec-
tronic Visualization Laboratory (EVL) at the University of Illinois at Chicago
and now an active research project at EVL, Argonne National Laboratory, and

the National Center for Supercomputing Applications [5]. In its current im-
plementation, the CAVE uses three projectors, displaying computer images on
two walls and the floor of a ten-foot cube (Figure 1). Tmages are projected
in stereo, so that a user wearing stereo glasses can see the images in true
three-dimensional space. The user’s position and orientation are tracked by an
electromagnetic tracking system, thereby allowing the environment to be ren-
dered in correct viewer-centered perspective. The user is able to manipulate
objects and navigate within the CAVE by using a wand, a three-dimensional
analog of the mouse of current computer workstations. The size of the CAVE,
approximately 10’ x 10° x 10°, allows several people to be in the CAVE and
share the experience. While only one user is tracked and has the correct per-
spective, experience shows that other users in the CAVE wearing stereo glasses
see a satisfactory image.

Figure 1: CAVE Virtual Environment (Milana Huang, EVL, 1994)

CAVE simulators are available to anyone having access to a Silicon Graphics
workstation. A recent low-cost addition to the CAVE family of VR devices is
the ImmersaDesk, which is a one-wall CAVE the size of a standard drafting
table.

Several CAVEs are in operation at this time around the country, including
one at each of the three major CAVE development research sites, with several
more being planned for construction. Each of these CAVEs is being used for
interactive visualizations of applications being run on supercomputers [11]. At
Argonne, for instance, researchers have developed a drug design application, a
mesh refinement demonstration, and a finite element analysis application [4].

Many of the applications, both those under way and those being planned,
involve collaboration with universities and other national laboratories. Since
these applications are interactive, and since the CAVE currently requires that
all participants be in the same physical space, collaborators are burdened by
the need to travel to one of the CAVE sites for demonstrations or testing.

To address this problem, we are investigating ways to remove the barrier
of distance while sharing a virtual experience. The goal is to enable the use of
the CAVE as a distributed and collaborative environment. Achieving this will
remove the limits of using CAVE technology only at sites that have expensive
supercomputers and full CAVE setups, thereby allowing users anywhere to join
in the exploration with as little as a CAVE simulator. We call this project the
CAVE to CAVE project.

3 Preliminary CAVE to CAVE Experiments

In the Mathematics and Computer Science Division at Argonne National Lab-
oratory, a Futures-Lab group meets weekly to discuss computing futures issues,
present current work, hear guest speakers, etc. After we installed our CAVE in
July of 1994, the discussion often turned to new and innovative ways to utilize
the CAVE. We spent countless hours discussing new paradigms for using it,
arguing about the “right” way to design new libraries of functionalities and
even what to call some of these imagined functions. One point we agreed on,
however, was that there was an obvious opportunity to use two or more CAVEs
to share a VR experience. What we could not agree on was just how to accom-
plish that. The personnel involved with the other two CAVEs in lllinois, at the
EVL and NCSA | have also had these discussions and have run various unpub-
lished experiments. Somewhat belatedly, we finally realized that there was too
much that we did not know to effectively discuss alternative implementations,
and we decided to run a series of experiments.

3.1 Experiment 1: Simple Transmissions and
Representation from one CAVE to another

The first experiment we ran was to have two CAVEs continually transmit the
head and wand locations of their occupants to one another. We represented
the position of the occupant of the remote CAVE with a large red sphere and
the wand position with a small yellow sphere. We wanted to see whether the
two occupants could interact in any meaningful way. We wrote the application
using an existing socket library, and we recruited participants from the EVL
CAVE to help us. We knew from previous experiments that roundtrip time for
a TCP/IP message from the EVL CAVE to ours is typically 30 to 50 ms. This
limited us to about 20 updates per second, good enough for smooth animation
of the representation.

When running a CAVE program, the library forks separate draw-
ing processes that communicate with the update process through
shared memory. The update process computes new locations for
objects and updates the shared memory region. There is not nec-
essarily any synchronization between the update process and the

drawing processes. This configuration allows the CAVE to main-
tain a relatively constant screen update rate, independent of the
ability of the update process to produce timely scene changes. It is
this decoupling of the update and drawing processes that allows us
to have the update processes stream position data and still maintain
a good refresh rate on the screens.

We learned important lessons right away regarding the representation of the
other person, and about the importance of orientation. The problem was that
since the sphere looked the same from all sides, there was no way for a CAVE
occupant to know where the front of the representation was, and so there was
no easy way to cooperatively move together or to move toward or away from
one another.

3.2 Experiment 2: Person Orientation Clues

The next experiment we ran was to add “eyes” to the sphere, small spheres that
always pointed in the same direction in which the CAVE occupant was looking.
This helped quite a bit, but pointed out the problem of CAVE orientation.
Since we operated both CAVEs within the exact same reference frame, they
were both oriented in the same direction. Since we can project only on two
walls, one CAVE occupant could see the other only if he was between the viewer
and a projected wall.

This situation, of course, caused difficulty because each occupant continu-
ally maneuvered (in circles) to place the representation between himself and a
projected wall so as to see the representation.

This problem was the subject of much discussion, with simple fixes proposed
such as “rotate one CAVE’s reference frame by 180 degrees.” While this debate
continued, we decided to add more functionality to the existing representation.

3.3 Experiment 3: Additional Information

We added information about the wand position and drew a “stick man” with a
head at the same height as the remote CAVE occupant, with two legs and arms
and a wand attached to one of the arms (Figure 2). As the remote occupant
moved his wand around, the representation in the other CAVE did the same.
As the occupant of the remote CAVE turned around, stooped, jumped, or
walked around, so did the representation. By running the remote CAVE from
a simulator in the same room as the CAVE, we were able to provide out of band
audio communications to complete the “point and say” tutorial-type model of
CAVE to CAVE interaction. This approached looked like it would be quite
effective, so we started another experiment.

3.4 Experiment 4. Generalization of the Model

To begin generalizing the model, we next developed a server to facilitate mes-
sage exchange between CAVEs. We added the server and the representation
to our molecular dynamics visualization application, an existing CAVE appli-
cation for which we own the source code [6]. We were able to see immediately
that our intuition was right: one could conduct a meaningful ”point and say”

Figure 2: Stick man

tutorial-type interaction in a real CAVE application using an audio channel
and only a ”stick man” representation of the position of the occupant of the
remote CAVE. We still had the orientation problem, and sometimes a CAVE
occupant would get lost inside the representation of the occupant of the remote
CAVE, but we were satisfied that this had the potential to be an important
new use of the CAVE.

3.5 Experiment 5. Orientation and Navigation

To solve the orientation problem, we decided to operate within a larger world-
coordinate system understood by both CAVEs. We developed world- to-local
space transforms and added that functionality to the simulations. We placed
the simulation in the space, and located the remote CAVE in some different
part of the space from the local CAVE. Now, it became easy to see where
the other person was in his CAVE, and in relation to ourselves. We added
navigation functions that allowed one to steer and rotate his CAVE to the

front of the remote CAVE, enabling easy and natural ways to see one another.
To interact, one needed simply to rotate and steer his CAVE to intersect with
the representation of the remote CAVE (Figure 3). The two occupants could
then interact with the same part of the data. During these experiments, we
continued to have the CAVEs stream data to each other, through the server,
using the MPI message-passing software. We started the processes using the
p4 process startup as part of the p4 MPI layer. Next, we wanted to see what
it would be like to have more than one remote CAVE.

Figure 3: Snapshot of virtual users taken from CAVE simulator

3.6 Experiment 6. Scaling the number of CAVES

We ran tests adding remote CAVEs to the experiments and learned that there
was an inverse linear relationship between the number of CAVEs added and
the update rate we could expect in our CAVE. At ten remote CAVEs, the
system was unusable because of lag and slow response time. Our solution was
to vary the rate at which the CAVEs transmitted their location. By having

every CAVE transmit only on every Nth time step, where N is the number
of CAVEs participating in the session, we found we could sustain smooth ani-
mations of the representations and not noticeably degrade performance of the
simulation. With more than ten CAVEs participating, we started to notice a
jerky movement of the representation of the CAVEs, due to the fact that we
were not sampling the position often enough. We believe that these effects
can be mitigated through the use of lag compensation algorithms [15]. At this
point, we had learned enough to be able to discuss various types of CAVE to
CAVE scenarios. In doing so, we were able to articulate the issues involved in
developing a model and to propose a general programming model to add to the

CAVE library for CAVE to CAVE interaction.

4 CAVE to CAVE Scenarios

When developing the support needed to address the issues of a Collaborative
Distributed Virtual Environment (CDVE), we need to study the basic compo-
nents of a CAVE application. Considering past experiences, we find that most
of our applications fall into one of the following categories:

e Real-time connection to interactive simulation, either running locally on
the CAVE graphics computer or running on a remote supercomputer.

e Playback of precomputed data with or without interaction, with the data
either residing locally or on a remote system.

What follows is a general discussion of these basic CAVE application issues,
their relationship to CDVE, and examples of applications. The examples will
be discussed in two ways: how the application currently is implemented, and

how 1t could be added to a CDVE.

4.1 Real-Time Connection Issues

One of our primary virtual environment interests i1s the connection of the CAVE
to computer simulations, running in real time on either our local IBM SP2 or via
a high-performance network to remote supercomputers. Real-time connection
of the CAVE to a computer simulation permit interactive steering. Thus the
user of the CAVE can make judgments and push the simulation toward user-
defined goals. This configuration, combined with a CDVE, would allow multiple
sites to view the simulation at the same time and allow remote collaborators
to work together in new ways.

4.2 Real-Time Examples

An example of a real-time connection is the interactive molecular modeling
application developed by Carolina Cruz-Neira, Paul Bash, and others [8]. In
this application, the user guides the docking of a drug molecule to its molecular
receptor. As the user guides the drug molecule into the active site of a protein,
he/she receives real-time feedback from the simulation running on the IBM
SP2. Another real-time connection is the simulation of a grinding process by
Tom Canfield et al. [3]. In this application, the user controls the placement

and force of material against a grinding wheel (Figure 4). This placement
controls a finite element analysis running on the IBM SP2. Real-time feedback
is provided: the coloring and shading indicate thermal stress on the material
and the wheel.

Figure 4: CAVE Grinder Application (Shannon Bradshaw, ANL, 1995)

4.3 Real-Time CAVE to CAVE Issues

Traditionally a real-time CAVE application communicates with a remote su-
percomputer over an arbitrary communications package. The CAVE sends
button and joystick readings and user and wand positions to the simulation.
The simulation in turn responds with data needed for the visualization (Figure

In a CDVE environment there is still a controlling CAVE (Master) and
a remote supercomputer, but additionally there is the possibility of multiple
viewers at distant CAVEs (dCAVEs). The master CAVE directs the infor-

mation to the simulation, and the simulation in turn broadcasts the results

<— YJmlation Data

SUPER
CAVE COMPUTER

Tracker and VWnd Data —»

Figure 5: Single CAVE Supercomputer Simulation

to all the participating dCAVEs (Figure 6). If the developer chooses, remote
representations of other participants can be displayed in each dCAVE.

........
.

0
o

H ”’. \ SI MULATOR

SUPER Mast er B e \\ / ¢ Broadcast s

COMPUTER CAVE { Tracker and

b : \Wand Data

Recei ve
d S mul ation
Broadcast s Broadcast s % SI MULATOR “ Data

S mul ation Tracker and :
Dat a Wand Dat a o

e,
0
.
.....
. .
.............

Figure 6: CAVE to CAVE Supercomputer Simulation

The following issues are raised when we consider sharing these types of
simulation among two or more CAVEs assuming all participants share one

simulation:
e How is control of the simulation arbitrated?
e What protocol is in place for subscribing/leaving sessions?
e How much bandwidth is required to transmit

— Control data?

— Application data?

e How are virtual users of the dCAVE represented?

4.4 Precomputed Data Issues

We have developed several examples of animated playback applications. Typi-
cally these applications are ones in which the simulation cannot be run in real
time, or where the simulation has not yet been parallelized or ported to an
appropriate platform.

Applications of this type are characterized by frequent independent calls to
stop, go back, go forward, etc. as individuals express their preferences in ex-
ploring the data space. Users are often required to navigate around the virtual
world and to manipulate objects within the world. In a shared experience with
multiple viewers in the same CAVE, the additional viewers can be thought of
as riders on a tour bus, with the user controlling the navigation acting as the
tour guide. These applications are largely tutorial in nature.

4.5 Precomputed Data Examples

An example of animated playback is the simulation of a casting process [13].
The simulation of the process requires too much computation time to run it
in real time. Therefore a number of timesteps are written to files and then
animated in the CAVE. Based on how the data is stored, some interaction
is allowable. In this application, for example, the user can look at different
temperature surfaces; to achieve this capability, isosurfaces are computed in
real time. Additional control of the playback is done with a VCR-like control
panel.

Navigation of architectural space is another example of using precomputed
data. The reactor walkthrough application developed an ANL by Randy Hud-
son et al. was designed to provide an inside view of a Fast Breeder Reactor at
the Argonne West reactor facility in Idaho. Operators of the reactor had never
seen the inside and could only imagine what internal conditions were occurring
in response to their manipulation of the reactor controls. The application al-
lows CAVE passengers to navigate around and within the reactor, remove parts
to improve visibility, and run fuel-handling sequences.

4.6 Precomputed Data CAVE to CAVE Issues

When multiple CAVEs are connected, a whole new range of possibilities must
be addressed.

Assuming each CAVE user has his own copy of the data and can play it
back independently, the following issues are relevant:

e How are session participants represented?
e How is the state of other sessions represented?
e How does one “join” another session?

— Go to the same place in the playback?

— Go to the same viewpoint?

5 CAVE to CAVE Issues

The scenarios discussed in the preceding section provide us with a way to
think about the nature of CAVE to CAVE interactions. We see collaborative-
type interactions, where users can independently explore the data set, pointing
and saying things; shared exploration of the data space, with accompanying
pointing and saying actions; and tutorial type interactions, which require shared
navigation and have a predominately one-way pointing and saying interaction.

By considering the above scenarios, we are able to focus on five issues that
are of immediate importance to our users in our exploratory attempts to achieve
useful shared CAVE experiences:

e Session Management (Connection/Authentication, Brokering)
e CAVE to CAVE Reference Frame

e Representation of Collaborators and Their CAVEs

e Synchronization (Events and Tracking)

e Navigation

5.1 Session Management

A session is a multiple CAVE and/or supercomputer interaction. A method for
process startup must be defined, and if necessary, copies of static data sets must
have been previously made available to each copy of the application. Once the
session is begun, the server provides session management through control data
streams. An API is provided for the following functions:

e Registration: notifies others of available service

e Session status: allows participants to learn about the presence of other
participants and of existing sessions

e Session attachment and detachment
e Data subscription and cancellation

e Subscription to predefined data from other CAVEs, such as trackers and
buttons, and to user-defined data from other CAVEs or from participating
supercomputers

Connection to data sources depends on the context of the data. If the data
is to be shared in such a way that each user can modify the data, then a way of
communicating that change must be determined to keep scenes synchronized
among the various CAVEs.

Precomputed datasets can be copied to each machine at startup to minimize
network traffic of data being transferred on demand. If datasets become too
large, this may not be possible. The use of compression schemes should also be
explored to determine whether certain types of data can be compressed without
loss of meaning or content.

Datasets that are generated on demand by a CAVE that is controlling a
simulation, but being viewed by multiple CAVEs will need to broadcast the
content of the calculated data to all CAVE’s involved. Datasets that are gen-
erated on each individual CAVE will need to synchronize simulations, once
one viewer wants to see what another CAVE is doing. Ideally one would not
want to synchronize simulations but instead become a viewer of the CAVE of
interest. Once the interested party is done viewing the other CAVE, he can
go back to working where he left off. The other needed feature is to be to be
able to synchronize simulations so that one could start exploring from the other
CAVE’s location without being tied to watching only that CAVE.

Interactive precomputed datasets would need to use a combination of the
two situations described above. As a means to lower network traffic one could
allow the precomputed data to reside on each participating CAVE. CAVEs
would need to synchronize to keep the movies in step.

5.2 CAVE to CAVE Reference Frame

A world reference frame becomes a requirement when building a CAVE to
CAVE library. The CAVEs will not only have their own local coordinate system
but will need to be able to broadcast their positions to all other participating
CAVEs. This can be done by developing a global coordinate system where each
CAVE broadcasts its location within the world and then each participating
CAVE is responsible for reconstruction of that CAVE at that location. The
simplest case involves the displaying of the dCAVE’s user in one’s CAVE. From
that lowest level one can expand the amount of detail of the dCAVEs such as
position, orientation, and what is being viewed. A protocol will eventually be
proposed for establishing reference synchronization.

5.3 Representation of Collaborators and Their CAVEs

The quality of rendering of the dCAVE’s representation required to give the
feeling of presence is not a quantifiable measurement. The higher the quality,
the more realistic the feeling can be, but this also brings up the question of
computational cost of the representation. A very realistic representation of the
dCAVE user will slow the rendering of CAVE visualization by requiring more
polygons to be drawn. In terms of the tutor scenario, only the representation
of the teacher needs to be drawn in each of the dCAVEs; the location of the
students is of no concern. On the other hand, the navigation of a space may
require the representation of all dCAVE’s in each individual’s CAVE. In this
case a lower-quality representation will work [12].

Through our experiments we have found that the use of an audio channel
greatly enhances the CAVE to CAVE interaction.

5.4 Synchronization

Synchronization signals must be defined for the following:

e Control arbitration

e Position/viewpoint

e Animated playback

e Data sets

e Animation state

e Direction, speed, viewing options, timestep
e Static object or space examination

e Viewing state

e Object features (i.e. transparency)

We need more experience in order to determine how frequently synchroniza-
tion signals must be passed, how much network latency can be tolerated, and
how much data is required.

5.5 Navigation

A continuing thread in the development of the CAVE to CAVE library is the
representation of information from one CAVE to the next. Navigation of one’s
own CAVE about its space is now a standard part of the CAVE library. How
to represent the movement of the dCAVEs in one’s own CAVE is an issue. How
to tell which CAVE is navigating, how to pass the control of navigating from
one CAVE to the next, and how network latency affects the experience are all
under study.

6 The Model

6.1 LabSpace architecture

The LabSpace architecture proposes a mediated client/server model. (Figure 7)
The broker provides session management functions, while data is communicated
directly between clients and servers. We have developed our own server to
mediate sessions between CAVEs, supercomputers, or other network citizens
adhering to our protocol.

6.2 Our Programming Model

In developing the programming model, we used several guidelines. First, the
general model had to fit into the overall LabSpace model of mediated client/server.
We anticipate that our programming model will eventually be subsumed by the
LabSpace architecture. Second, we wanted the library to be robust and extensi-
ble. We wanted to provide all the functionality required to satisfy the scenarios
we mentioned above and still provide enough functionality and extensibility
to support other scenarios that we had not thought of. Third, we wanted to
present a simple layer to the applications programmer to hide most of the com-
plexity of performing CAVE to CAVE communications. Fourth, we wanted

LabSpace
Architecture
Overview

Parallel
Supercomputer

Session Broker
(mixer)

Elab Server
Object Oriented
Multiuser Virtual s « >
atabase
Environment

MultiStream Archiver
parallel record/playback
engine

Browser with
Catalog

Persistent Electronic
Spaces, Places, Tools,

Entry Point
Rooms and Users

Roadmaps
Guide Books
Tours

Session Broker
(mixer)

Figure 7: LabSpace Architecture Overview

to make use of existing portable standards-based software wherever possible

(Figure 8).

The main library functions in the CAVE to CAVE protocol layer are de-
scribed in the API found in Appendix A. The functions are designed to facilitate
session management, data management, and communications. We have not yet
designed a library to facilitate inter-CAVE object management, but we intend
to 1in our next iteration of the library development.

6.3 MPI

Notice that we have used the MPI message-passing system as an intermediate
portable communications layer. While satisfying many of our requirements
(portable, standards based, efficient, etc.), MPI falls short in several important
areas.

First, MPI communicator groups are static, while we require that CAVEs
be able dynamically to join and leave sessions. We have worked with the MPI
developers at Argonne to specify MPI extensions that provide for dynamic com-
municator groups. We have developed the underlying layer to implement these
extensions, soon to be available in the next release of MPICH [9]. Another

CAVE to CAVE UWser Library

C2C Prot ocol
Sessi on Managenent | Dat a Managenent
Message Passi ng Layer (MA) L(i:,t?r\;rEy

Communi cation Layer (P

Transport Layer (TQGRIP

Figure 8: CAVE to CAVE Library

feature we require, also available in the next release of MPICH, is the ability
to support multiple-protocol communications (e.g. SP2 switch and TCP from
SP2 to another machine in the same MPI program). Second, MPI deliberately
does not specify any means of process startup. We have decided not to pro-
pose any development in this area while we wait for the development of the
labspace system which will address the issues of authentication and security in
remote process start up. In the meantime, we use the p4 secure server to start
processes on remote systems [1, 2]. Lastly, we anticipate that for the sake of
efficiency, we will require a multicast-like capability to adapt to dynamically
changing low-level link configuration. This feature is not available in any MPI
implementation today.

6.4 User Level API

Using these library functions, we have written a simple layer for application
programmers to use in making their applications available to CAVE to CAVE
sessions. We provide the following functions for consideration:
e void C2CInit(int arge, char *argv[])
Initializes specific variables needed for CAVE to CAVE functions. Con-
nects to broker as specified in CAVE config file.
e void C2CUpdate(C2C_ID_LIST request)

Requests updates to local variables of remote CAVEs states.

e void C2CExit()
Disconnects CAVE from broker.

e void C2CDrawRemoteCaves(C2CID_LIST request, void (*function)(),
int number_args, ...)

If this function s not called remote CAVEs are represented by a simple
stick figure. If this function is called the drawing function passed will be
used to represent the remote CAVEs.

e void C2CPostData(C2CID_LIST request, int nbytes, char *data)

Post a generic chunk of data to the broker bulletin board.

e void C2CGetData(C2CID_LIST request, int nbytes, char *data)
Get a generic chunk of data from the broker bulletin board.

e void C2CViewServiceList()
Graphically displays to the user what is available from the CAVE to CAVE
broker.

e void C2CChangeServiceRequest(C2C_ID newService)

Choose new service to subscribe to.

e void C2CTeleport(C2C_ID CAVE, C2C_VIEW view)

Teleport local CAVE user to the location of chosen CAVE, with the view-
point as specified by the variable view.

7 Communication Requirements

Using the model developed above, we have built a test bed to use in examin-
ing the boundaries of the communications requirements imposed by CAVE to
CAVE interactive sessions. We have run experiments testing CAVE to CAVE
latency effects, throughput requirements, and usability as the number of ses-
sions scale. The volume and nature of data transmitted is characterized as
follows:

o Tracker data: Per message - 48 bytes (12 floats) plus 24 for MPT header
e Button data: Per message - 48 bytes (12 floats) plus 24 for MPI header

e Reference Frame Information: Per message - 48 bytes (12 floats) plus 24
for MPI header

e Synchronization Data Per message - 0 bytes plus 24 for MPT header (MPI
tag denotes data type).

Messages per second vary with the number of CAVEs interacting (Figure
9).

8 Results

During development of the CAVE to CAVE library a comparison of different
message sending techniques was done to find the fastest MPI mechanism for
sending information from each CAVE to all the other CAVES (Figure 9).

We then looked at the amount of data that needed to be sent from CAVE
to CAVE, using both unicast and multicast methods (Figure 10). These results

Comparison of Different Ways to Send Messages

0.18r
0.16 - + Blocking
— — Nonblocking
_0.14r Initialized
0
& Every n CAVE Updates
012t
& Every Update
@
(]
= 0.1r
c
[}
z
£ 0.08-
0
g
= 0.06 -
0.04r-
0.02f R
#,,»‘”‘4{##’
7*>774'>+"47¥_,4f4+’~ +
O*’ - 1 1 1 1 1 1 |
2 3 4 5 6 7 8 9 10

Number of CAVEs

Figure 9: Measurements of time needed to send tracker data using various MPI
message sending techniques.

demonstrated that a multicast method was the only reasonable method to use
to avoid saturation of the available network bandwidth. In addition, even
using the multicast communication method requires a network of at least OC-
3 bandwidth to handle more than ten CAVEs. It should be noted that the
CAVEs are sending tracker data as often as they can. It as been determined
that this is not absolutely necessary, and we have worked on various techniques
to reduce the number of sends.

9 Conclusion and Future Plans

Through experimentation, user survey, and group discussion, we have devel-
oped a set of requirements for CAVE to CAVE interaction. Based on these
requirements, we have developed a mediated client/server model. We have im-
plemented the model through a library of functions designed to be robust and
extensible. We use the MPI message-passing system as an intermediate-layer
communications library. Using our CAVE to CAVE library, we have run a
series of timing experiments designed to test the boundaries of communication
requirements in CAVE to CAVE interactions.

We have not addressed the issue of object sharing and manipulation between
CAVEs in the current library. We plan to run experiments to discover issues
involved in sharing objects and will develop a set of requirements and design a
model to implement CAVE to CAVE object sharing.

CAVE to CAVE Interaction Scaling

700
600
T1 Connection to EVL
500 — — DS-3 Connection to UofC _
Internal MCS OC3 ATM rd
- - — Internal MCS Ethernet P -
c i ~
g 400} Unicast -
@ — Multicast
2
E e -
3 /
S
S 300(
o
o
200} 7
100F =~ 7 =~ ST T TS TS TS T T TTTTo
O Il Il Il Il J
5 10 15 20 25

Number of CAVEs
Figure 10: Comparision of Unicast and Multicast communication methods
across relative networks.
Acknowledgments
The authors wish to thank Remy Evard, William Nickless, Robert Olson, and
Valerie Taylor, along with rest of the Futures Lab Group for insightful dis-

cussions on this subject. This work was supported by the Office of Scientific
Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.

A CAVE to CAVE API

A.1 Audience
o CAVE

ImmersaDesk

CAVE Simulator

e Supercomputer Simulations

Other Applications

A.2 Model

One or more session brokers exist. A session broker manages multiple sessions
for an arbitrary group of participants. Participants are bimodal - client and
server. Each participant serves the requested data to the requesting parties at
the request of the session broker. Participants subscribe to one or more data
streams via the session broker. Data streams are communicated directly from
participant to participant.

A.3 Session Management Functions

o C2C_PARTICIPANTID C2CRegisterParticipant(char *broker_address,
char *environment)
Informs broker of a participant’s availability and capabilities. The broker
registers this information in an internal data base. Returns unique ud.

o int C2CUnRegisterParticipant(char *broker_address, C2C_PARTICIPANT ID
id)
Instructs broker to remove all knowledge of a participant and all connec-
tions to that participant.

o C2C_SESSION_ID C2CRegisterSession(char *broker_address, C2C_SESSION_INFO
info)
Informs broker of a new session that is available and the requirements

and capabilities of that session. The broker adds the new session to global
list of available sessions and returns the unique identifier of the session.

o int C2CUnRegisterSession(char *broker_address, C2C_SESSION_ID id)
Removes session from global list and notifies all participants that the ses-
SL0N 1S going away.

o int C2CGetSessionList(char *broker_address, int *number sessions, C2C_SESSION_INFO
*]ist)

Returns the number of sessions available and each sessions capabilities.

o C2CID C2CAttachToSession(char *broker_address, C2C_SESSION_ID
session_id, C2C_PARTICIPANT_ID my.id)

Attaches participant to requested session.

e C2C_ID C2CDetachFromSession(char *broker_address, C2C_Session_I1D

my_-id)

Detaches the participant from the session.

A.4 Data Management Functions
o C2C_Subscribe(C2C_Participant_Id data_source, C2C_Stream_Type data_type,
C2C_Data_Parameters parameters)

Instructs the broker to have the participant identified by data_source start
sending the requested data stream to the requester. The broker verifies
that the participant has the capability to send the requested data type.

e C2C_UnSubscribe(C2C_Participant_Id data_source, C2C_Stream_Type data_type)

Instructs the broker to have the participant identified by data_source stop
sending the requested data stream to the requester.

References

[1] R.Butler and E. Lusk. User’s guide to the p4 parallel programming system.
Technical Report ANL-92/17, Argonne National Laboratory, 1992.

[2] R. Butler and E. Lusk. Monitors, messages, and clusters: The p4 paral-
lel programming system. Technical Report P362-0493, Argonne National
Laboratory, 1993.

[3] T. Canfield, W. Jester, J. Rowlan, E. Plaskacz, M. Papka, and S. Co-
hen. Simulation of a grinding process in virutal reality. In L. Petrovich,
K. Tanaka, D. Morse, N. Ingle, J. Ford Morie, C. Stapleton, and M. Brown,
editors, Visual Proceedings, COMPUTER GRAPHICS Annual Conference
Series, page 224. SIGGRAPH, ACM SIGGRAPH, 1994.

[4] C. Cruz-Neira, T. A. DeFanti, R. Langley, R. Stevens, and P. A. Bash.
Vive: A virtual biomolecular environment for interactive molecular mod-
eling. Science, 1993. Submitted for Review October 1994.

[5] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti. Surround-screen
projection-based virtual reality: The design and implementation of the
CAVE. In ACM SIGGRAPH ’93 Proceedings, pages 135-142. SIGGRAPH,
ACM SIGGRAPH, 1993.

[6] T. Disz, M. Papka, M. Pellegrino, R. Stevens, and V. Taylor. Virtual
reality visualization of parallel molecular dynamics simulation. In 71995
Simulation Multiconference Symposium, pages 483-487, Phoenix, Arizona,
April 1995. Society for Computer Simulation.

[7] R. Gossweiler, R. J. Laferriere, M. L. Keller, and R. Pausch. An introduc-
tory tutorial for developing multiuser virtual environments. PRESENCE:
Teleoperators and Virtual Environments, 3(4):255-264, 1994.

[8] G. E. Lent, J. Rowlan, P. Bash, and C. Cruz-Neira. Interactive molec-
ular modeling using real-time molecular dynamics simulations and vir-
tual reality computer graphics. In L. Petrovich, K. Tanaka, D. Morse,
N. Ingle, J. Ford Morie, C. Stapleton, and M. Brown, editors, Visual Pro-
ceedings, COMPUTER GRAPHICS Annual Conference Series, page 223.
SIGGRAPH, ACM SIGGRAPH, 1994.

[9] E. Lusk. Mpich release document. World Wide Web, 1995.
http://www.mes.anl.gov /home/lusk /mpich.

[10] M. R. Macedonia, D. R. Pratt M. J. Zyda, P. T. Barham, and S. Zeswitz.
Npsnet: A network software architecture for large-scale virtual environ-
ments. PRESENCE: Teleopertors and Virtual Environments, 3(4):265—
287, 1994.

[11] T. M. Roy, C. Cruz-Neira, and T. A. DeFanti. Steering a high perfor-
mance computing application from a virtual environment. PRESENCE:
Teleoperators and Virtual Environments, 1994. To Be Published.

[12] D. W. Schloerb. A quantitative measure of telepresence. Presence: Tele-
operators and Virtual Environments, 4(1):64-80, 1995.

[13] R. Schmitt, H. Domanus, J. Rowlan, M. Papka, and S. Cohen. Visualiza-
tion of casting process in foundries. In L. Petrovich, K. Tanaka, D. Morse,
N. Ingle, J. Ford Morie, C. Stapleton, and M. Brown, editors, Visual Pro-
ceedings, COMPUTER GRAPHICS Annual Conference Series, page 224.
SIGGRAPH, ACM SIGGRAPH, 1994.

[14] R. Stevens and R. Evard. Distributed collaboratory experimental environ-

ments initiative labspace: A national electronic laboratory infrastructure,
1994. Grant Proposal.

[15] M. M. Wloka. Lag in multiprocessor virtual reality. Presence: Teleopera-
tors and Virtual Environments, 4(1):50-63, 1995.

	Appeared as:: Appeared as: T. L. Disz, M. E. Papka, M. Pellegrino, and R. Stevens, "Sharing Visualization Experiences among Remote Virtual Environments," In M. Chen, P. Townsend, J. A. Vince, editors "High Performance
	Appeared as: : Computing for Computer Graphics and Visualization," Proceedings of the International Workshop on High Performance Computing for Computer Graphics and Visualization, pages 217-237, Springer-Verlag, 1995.

