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Outline

• Motivation
• Linear Scaling Algorithms
• Conclusion
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Quantum Simulation Goals:
Accuracy and Predictive Capabilities
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Scalable and Accurate First Principles Method
Atomistic Methods
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Advances In Hardware Alone Are Not Sufficient
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Linear Scaling Algorithms Will Enable 
Solutions to New Problems

The combination of new advanced computing platforms and new scaling
algorithms will open new areas in quantum-level materials simulations
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Cray-X1E
• 1024 Multi-streaming vector processor (MSP)

− Each MSP has 2 MB of cache and a peak computation rate of 12.8 
GF

− 4 single-streaming processors (SSPs) form a node with 16 Gbytes
of shared memory

− Memory is physically distributed on individual modules
− all memory is directly addressable to and accessible by any MSP in 

the system through the use of load and store instructions
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LSDA &Multiple Scattering Theory (MST)
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Multiple Scattering Theory (MST)
J. Korringa, Physica 13, 392, (1947)
W. Kohn, N. Rostoker, PR, 94, 1111,(1954)

MST Green function methods
B. Gyorffy, and M. J. Stott, “Band Structure 

Spectroscopy of Metals and Alloys”, Ed. D.J. 
Fabian and L. M. Watson (Academic 1972)

S.J. Faulkner and G.M. Stocks, PR B 21, 3222, 
(1980)
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Pseudopotentials and Planewaves

• By construction Vps has correct εnl

• Also want:
− Norm conservation
− Scattering properties remain 

pretty good for nearby εnl
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Scaling on Cray X1E and XT3

• Vienna Ab-initio Simulation Package 
(VASP)
− BCC Cu, 400 eV Plane wave cutoff

• Small system sizes 
− Forward and backward FFT

• Large system sizes
− Davidson diagonalization
− Forward and backward FFT

• Fixed number of plane waves 
− Changing the number of plane waves 

per processor
• Optimal density of atoms/node

− For the Buckyball ~ 1.9 atoms/node
− Thus, to run a 1000 atom system 

optimally would require 500 processors

Cray X1E Scaling with System Size
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Qbox
•Qbox is a C++/MPI implementation of the 
planewave,
pseudopotential, ab initio molecular dynamics
It is developed at LLNL.
•Massively parallel C++ / MPI implementation with

specialized 3D FFTs
specialized ScaLAPACK

• 686-atom Mo solid and other heavy metal
simulations are under way
•Scalability tests on BG/L show that Qbox can
achieve a 3x speedup when solving a given 
problem
on 16384 nodes instead of 4096 nodes. This
represents a 75% parallel efficiency. Further
optimizations will provide even greater efficiency.
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Algorithm Design for future 
generation architectures

• More accurate
• Spectral or pseudo-spectral accuracy

• Wider range of applicability
• Sparse representation

• Memory requirements grow linearly
• Each processor can treat thousands of atoms

• Make use of large number of processors
• Message-Passing

• Each atom/node local message-passing is independent 
of the size of the system

• Time consuming step of model
• Sparse linear solver 
•Direct or preconditioned iterative approach
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Complex Energy Plane

The scattering properties at complex energy can be used to 
develop highly efficient real-space and k-space methods

Real ε

Im ε

εf

Semi-conductors and insulators could work 
well since they have no states at εf

Scattering is local since there are no states 
near the bottom of the energy contour

Scattering is local since a large Im ε is equivalent 
to rising temperature which smears out the states

Near εf scattering is non-local (metal)
Real ε

Im ε

εf

εf is the highest occupied electronic state in energy
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Multiple Scattering Theory
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Multiple scattering theory
• Green function

• Scattering path matrix
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Screened MST Representation

Tight Binding Multiple Scattering Theory
•Notice that G0 has no eigensolutions and 
decays rapidly for negative energies
•Need a reference system that supports no 
eigensolutions in energy range important 
to solid-state physics and chemistry( ~+1 Ryd.)
•Embed a constant repulsive potential
•Shifts the energy zero to negative energies
•Rapidly decaying interactions
•Sparse representation

   G
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G = G0 + G0tG0 + G0tG0tG0 = G0(I − tG0 )−1

G−1 = G0
−1 − t

Gr = G0(I − t rG0 )−1

(Gr )−1 = G0
−1 − t r → G0
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Screened Structure Constants

• Screened Structure Constants Gs on the left unscreened on the right
− Screened structure constants 

rapidly go to zero, whereas the 
free space structure constants 
have hardly changed

• Linear solve using m atom 
cluster that is less than the n 
atom system

• Easy to perform Fourier 
transform
−K-space method

  G
s (ε) = [I − t sGfree (ε)]−1
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Screened MST Algorithm Design

• Linear scaling
− Each node performs a fixed size local calculation

• Thus each node performs the same number of flops

• Message-Passing
− Each atom/node local message-passing is 

independent of the size of the system
• Time consuming step of model

− Sparse non-symmetric iterative step
• Highly parallel since main computation is a sparse 

matrix-vector or matrix-matrix operation
• sparse BLAS level 2 or 3
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Screened MST Methods

• Formulation produces a sparse matrix representation
− 2-D case has tridiagonal structure with a few distant elements due to 

periodicity
− 3-D case has scattered elements

• Mainly due to mapping 3-D structure to a matrix (2-D)
• A few elements due to periodic boundary conditions

• Require block diagonals of the inverse of τ(ε) matrix
− Block diagonals represent the site τ(ε) matrix and are needed to calculate the 

Green’s function for each atomic site
• Sparse direct and preconditioned iterative methods are used to calculate 

τii(ε)
− SuperLU
− Transpose free Quasi-Minimal Residual Method (TFQMR)
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Screened KKR Accuracy and Timing

fcc Cu
bcc Cu
bcc Mo
hcp Co
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Conclusion
• Initial benchmarking of the Screened MST method

− SuperLU N1.8 for finding the inverse of the upper left block of τ
− TFQMR with block Jacobi preconditioner N1.06 for finding the inverse of 

the upper left block of τ
• Extremely high sparsity (97%-99% zeros increases with 

increasing system size)
• Large number of atoms on a single processor
• Real-space/K-Space hybrid may provide the most efficient 

parallel approach for new generation architectres
• Single code contains both screened and unscreened 

methods
• Ideal for including DFT with Exact Exchange
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Multiresolution chemistry objectives
• Complete elimination of the basis error

− One-electron models (e.g., HF, DFT)
− Pair models (e.g., MP2, CCSD, …)

• Correct scaling of cost with system size
• General approach

− Readily accessible by students and researchers
− Higher level of composition 
− No two-electron integrals – replaced by fast application 

of integral operators
• New computational approaches 
• Fast algorithms with guaranteed precision
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How to “think” multiresolution

• Consider a ladder of function spaces

− E.g., increasing quality atomic basis sets, or finer 
resolution grids, …

• Telescoping series

− Instead of using the most accurate representation, use 
the difference between successive approximations

− Representation on V0 small/dense; differences sparse
− Computationally efficient; possible insights

0 1 2 nV V V V⊂ ⊂ ⊂ ⊂L

0 1 0 2 1 1( ) ( ) ( )n n nV V V V V V V V −= + − + − + + −L
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Adaptive Refinement
• To satisfy the global error condition

• Truncate according to

• This is rather conservative – usually use

22
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Separated form for integral operators

• Approach in current prototype code
− Represent the kernel over a finite range as a sum of Gaussians

− Only need compute 1D transition matrices (X,Y,Z)
− SVD the 1-D operators (low rank away from singularity)
− Apply most efficient choice of low/full rank 1-D operator
− Even better algorithms not yet implemented
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Timing and Scaling on Cray XT3

• 4096 Cu atoms
• Displays near linear 

scaling with increasing 
system size

• Working with localized 
orbitals
− O(1) application of 

operators to one 
orbital

− O(N) computation of 
Coulomb potential

− O(N) computation of 
Fock-like matrices 

− More robust 
convergence 
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Summary
• Multiresolution analysis provides a general framework for 

computational chemistry
− Accurate and efficient with high-level composition
− Multiwavelets provide high-order convergence and readily 

accommodate singularities/boundary conditions
− General framework readily accessible to researchers
− Real impact will be application to many-body models

• Separated form for operators and functions
− Critical for efficient computation in higher dimension

• Precision is guaranteed
− Excited states, non-linear response, …

• Near total rewrite in C++
− Two-levels of parallelism targeting massively parallel computer 

using multi-processor nodes
− In anticipation of highly-threaded processors


	Scalable First Principles Electronic Structure Methods
	Acknowledgement of  Sponsors
	Outline
	Quantum Simulation Goals:�Accuracy and Predictive Capabilities
	Scalable and Accurate First Principles Method
	Advances In Hardware Alone Are Not Sufficient
	Linear Scaling Algorithms Will Enable �Solutions to New Problems
	Cray-X1E
	Pseudopotentials and Planewaves
	Scaling on Cray X1E and XT3
	Qbox
	Algorithm Design for future �generation architectures
	Complex Energy Plane
	Screened MST Representation
	Screened Structure Constants
	Screened MST Algorithm Design
	Screened MST Methods
	Screened KKR Accuracy and Timing
	Conclusion
	Multiresolution chemistry objectives
	How to “think” multiresolution
	Adaptive Refinement
	Separated form for integral operators
	Timing and Scaling on Cray XT3
	Summary

