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8 Abstract

9 Fluid dynamical simulations based on ®nite discretizations on (quasi-)static grids scale well

10 in parallel, but execute at a disappointing percentage of per-processor peak ¯oating point

11 operation rates without special attention to layout and access ordering of data. We document

12 both claims from our experience with an unstructured grid CFD code that is typical of the

13 state of the practice at NASA. These basic performance characteristics of PDE-based codes

14 can be understood with surprisingly simple models, for which we quote earlier work, pre-

15 senting primarily experimental results. The performance models and experimental results

16 motivate algorithmic and software practices that lead to improvements in both parallel sca-

17 lability and per node performance. This snapshot of ongoing work updates our 1999 Bell

18 Prize-winning simulation on ASCI computers. Ó 2000 Elsevier Science B.V. All rights re-

19 served.
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23 1. PDE application overview

24 Systems modeled by partial di�erential equations often possess a wide range of
25 time scales ± some (or all, in steady-state problems) much faster than the phenomena
26 of interest ± suggesting the need for implicit methods. In addition, many applications
27 are geometrically complex, suggesting the convenience of an unstructured mesh for
28 fast automated grid generation. The best algorithms for solving nonlinear implicit
29 problems are often Newton methods, which in turn require the solution of very large,
30 sparse linear systems. The best algorithms for these sparse linear problems, partic-
31 ularly at very large sizes, are often preconditioned iterative methods, of multilevel
32 type if necessary. This nested hierarchy of tunable algorithms has proved e�ective in
33 solving complex problems in such areas as aerodynamics, combustion, radiation
34 transport, and global circulation.
35 When well tuned, such codes spend almost all of their time in two phases: ¯ux
36 computations (to evaluate conservation law residuals), where one aims to have such
37 codes spent almost all their time, and sparse linear algebraic kernels, which are a fact
38 of life in implicit methods. Altogether, four basic groups of tasks can be identi®ed
39 based on the criteria of arithmetic concurrency, communication patterns, and the
40 ratio of operation complexity to data size within the task. These four distinct phases,
41 present in most implicit codes, are vertex-based loops, edge-based loops, recurrences,
42 and global reductions. Each of these groups of tasks stresses a di�erent subsystem of
43 contemporary high-performance computers. Analysis of our demonstration code
44 shows that, after tuning, the linear algebraic kernels run at close to the aggregate
45 memory-bandwidth limit on performance, the ¯ux computations are bounded either
46 by memory bandwidth or instruction scheduling (depending upon the ratio of load/
47 store units to ¯oating-point units in the CPU), and parallel e�ciency is bounded
48 primarily by slight load imbalances at synchronization points.
49 Our demonstration application code, FUN3D, is a tetrahedral, vertex-centered
50 unstructured mesh code originally developed by W.K. Anderson of the NASA
51 Langley Research Center for compressible and incompressible Euler and Navier±
52 Stokes equations [1,2]. FUN3D uses a control volume discretization with a variable-
53 order Roe scheme for approximating the convective ¯uxes and a Galerkin discreti-
54 zation for the viscous terms. FUN3D has been used for design optimization of
55 airplanes, automobiles, and submarines, with irregular meshes comprising several
56 million mesh points. The optimization involves many analyses, typically sequential.
57 Thus, reaching the steady-state solution in each analysis cycle in a reasonable
58 amount of time is crucial to conducting the design optimization. Our best achieve-
59 ment to date for multimillion meshpoint simulations is about 15 ls per degree-of-
60 freedom for satisfaction of residuals close to machine precision.
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61 We have ported FUN3D into the PETSc [3] framework using the single program
62 multiple data (SPMD) message-passing programming model, supplemented by
63 multithreading at the physically shared memory level. Thus far, our large-scale
64 parallel experience with PETSc-FUN3D is with compressible or incompressible
65 Euler ¯ows, but nothing in the solution algorithms or software changes when ad-
66 ditional physical phenomenology present in the original FUN3D is included. Of
67 course, the convergence rate varies with conditioning, as determined by Mach and
68 Reynolds numbers and the correspondingly induced mesh adaptivity. Robustness
69 becomes an issue in problems that admit shocks or employ turbulence models. When
70 nonlinear robustness is restored in the usual manner, through pseudo-transient
71 continuation, the conditioning of the linear inner iterations is enhanced, and parallel
72 scalability may be improved. In some sense, the subsonic Euler examples on which
73 we concentrate, with their smaller number of ¯ops per point per iteration and their
74 aggressive pseudotransient buildup toward the steady-state limit, may be a more
75 severe test of parallel performance than more physically complex cases.
76 Achieving high sustained performance, in terms of solutions per second, requires
77 attention to three factors. The ®rst is a scalable implementation, in the sense that
78 time per iteration is reduced in inverse proportion to the number of processors, or
79 that time per iteration is constant as problem size and processor number are scaled
80 proportionally. The second is good per processor performance on contemporary
81 cache-based microprocessors. The third is algorithmic scalability, in the sense that
82 the number of iterations to convergence does not grow with increased numbers of
83 processors. The third factor arises because the requirement of a scalable imple-
84 mentation generally forces parameterized changes in the algorithm as the number of
85 processors grows. If the convergence is allowed to degrade, however, the overall
86 execution is not scalable, and this must be countered algorithmically. These factors
87 in the overall performance are considered in Sections 3±5, respectively, which are the
88 heart of this paper. Section 2 ®rst expands on the algorithmics. Section 6 details our
89 highest performing runs to date, and Section 7 summarizes our work and looks
90 ahead.

91 2. WNKS: a family of parallel implicit solution algorithms

92 Our implicit algorithmic framework for advancing toward an assumed steady state
93 for the system of conservation equations, f�u� � 0, has the form

1

Dt`

� �
u` � f�u`� � 1

Dt`

� �
u`ÿ1;

95 where Dt` !1 as `!1; u represents the fully coupled vector of unknowns, and
96 f(u) is the vector of nonlinear conservation laws.
97 Each member of the sequence of nonlinear problems, ` � 1; 2; . . ., is solved with an
98 inexact Newton method. The resulting Jacobian systems for the Newton corrections
99 are solved with a Krylov method, relying directly only on matrix-free Jacobian-

100 vector product operations. The Krylov method needs to be preconditioned for ac-
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101 ceptable inner iteration convergence rates, and the preconditioning can be the
102 ``make-or-break'' feature of an implicit code. A good preconditioner saves time and
103 space by permitting fewer iterations in the Krylov loop and smaller storage for the
104 Krylov subspace. An additive Schwarz preconditioner [5] accomplishes this in a
105 concurrent, localized manner, with an approximate solve in each subdomain of a
106 partitioning of the global PDE domain. The coe�cients for the preconditioning
107 operator are derived from a lower-order, sparser and more di�usive discretization
108 than that used for f�u�, itself. Applying any preconditioner in an additive Schwarz
109 manner tends to increase ¯op rates over the same preconditioner applied globally,
110 since the smaller subdomain blocks maintain better cache residency, even apart from
111 concurrency considerations [28]. Combining a Schwarz preconditioner with a Krylov
112 iteration method inside an inexact Newton method leads to a synergistic, parallel-
113 izable nonlinear boundary value problem solver with a classical name: Newton±
114 Krylov±Schwarz (NKS) [12]. We combine NKS with pseudo-timestepping [17] and
115 use the shorthand WNKS to describe the algorithm.
116 To implement WNKS in FUN3D, we employ the PETSc package [3], which fea-
117 tures distributed data structures ± index sets, vectors, and matrices ± as fundamental
118 objects. Iterative linear and nonlinear solvers are implemented within PETSc in a
119 data structure-neutral manner, providing a uniform application programmer inter-
120 face. Portability is achieved through MPI, but message-passing detail is not required
121 in the application. We use MeTiS [16] to partition the unstructured mesh.
122 The basic philosophy of any e�cient parallel computation is ``owner computes,''
123 with message merging and overlap of communication with computation where
124 possible via split transactions. Each processor ``ghosts'' its stencil dependencies on its
125 neighbors' data. Grid functions are mapped from a global (user) ordering into
126 contiguous local orderings (which, in unstructured cases, are designed to maximize
127 spatial locality for cache line reuse). Scatter/gather operations are created between
128 local sequential vectors and global distributed vectors, based on runtime-deduced
129 connectivity patterns.
130 As mentioned above, there are four groups of tasks in a typical PDE solver, each
131 with a distinct proportion of work to datasize to communication requirements. In
132 the language of a vertex-centered code, in which the data are stored at cell vertices,
133 these tasks are as follows:

· Vertex-based loops
� state vector and auxiliary vector updates

· Edge-based ``stencil op'' loops
� residual evaluation, Jacobian evaluation
� Jacobian-vector product (often replaced with matrix-free form, involving

139 residual evaluation)
� interpolation between grid levels

· Sparse, narrow-band recurrences
� (approximate) factorization, back substitution, relaxation/smoothing

· Vector inner products and norms
� orthogonalization/conjugation
� convergence progress checks and stability heuristics.
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146 Vertex-based loops are characterized by work closely proportional to datasize,
147 pointwise concurrency, and no communication.
148 Edge-based ``stencil op'' loops have a large ratio of work to datasize, since each
149 vertex is used in many discrete stencil operations, and each degree of freedom at a
150 point (momenta, energy, density, species concentration) generally interacts with all
151 others in the conservation laws ± through constitutive and state relationships or
152 directly. There is concurrency at the level of the number of edges between vertices
153 (or, at worst, the number of edges of a given ``color'' when write consistency needs to
154 be protected through mesh coloring). There is local communication between pro-
155 cessors sharing ownership of the vertices in a stencil.
156 Sparse, narrow-band recurrences involve work closely proportional to data size,
157 the matrix being the largest data object and each of its elements typically being used
158 once. Concurrency is at the level of the number of fronts in the recurrence, which
159 may vary with the level of exactness of the recurrence. In a preconditioned iterative
160 method, the recurrences are typically broken to deliver a prescribed process con-
161 currency; only the quality of the preconditioning is thereby a�ected, not the ®nal
162 result. Depending upon whether one uses a pure decomposed Schwarz-type pre-
163 conditioner, a truncated incomplete solve, or an exact solve, there may be no, local
164 only, or global communication in this task.
165 Vector inner products and norms involve work closely proportional to data size,
166 mostly pointwise concurrency, and global communication. Unfortunately, inner
167 products and norms occur rather frequently in stable, robust linear and nonlinear
168 methods.
169 Based on these characteristics, one anticipates that vertex-based loops, recur-
170 rences, and inner products will be memory bandwidth limited, whereas edge-based
171 loops are likely to be only load/store limited. However, edge-based loops are vul-
172 nerable to internode bandwidth if the latter does not scale. Inner products are vul-
173 nerable to internode latency and network diameter. Recurrences can resemble some
174 combination of edge-based loops and inner products in their communication char-
175 acteristics if preconditioning fancier than simple Schwarz is employed. For instance,
176 if incomplete factorization is employed globally or a coarse grid is used in a multi-
177 level preconditioner, global recurrences ensue.

178 3. Implementation scalability

179 Domain-decomposed parallelism for PDEs is a natural means of overcoming
180 Amdahl's law in the limit of ®xed problem size per processor. Computational work
181 on each evaluation of the conservation residuals scales as the volume of the (equal-
182 sized) subdomains, whereas communication overhead scales only as the surface. This
183 ratio is ®xed when problem size and processors are scaled in proportion, leaving only
184 global reduction operations over all processors as an impediment to perfect per-
185 formance scaling.
186 In [18], it is shown that on contemporary tightly coupled parallel architectures in
187 which the number of connections between processors grows in proportion to the
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188 number of processors, such as meshes and tori, aggregate internode bandwidth is
189 more than su�cient, and limits to scalability may be determined by a balance of
190 work per node to synchronization frequency. On the other hand, if there is nearest-
191 neighbor communication contention, in which a ®xed resource like an internet switch
192 is divided among all processors, the number of processors is allowed to grow only as
193 the one-fourth power of the problem size (in three dimensions). This is a curse of
194 typical Beowulf-type clusters with inexpensive networks; we do not discuss the
195 problem here, although it is an important practical limitation in many CFD groups.
196 When the load is perfectly balanced (which is easy to achieve for static meshes)
197 and local communication is not an issue because the network is scalable, the optimal
198 number of processors is related to the network diameter. For logarithmic networks,
199 like a hypercube, the optimal number of processors, P, grows directly in proportion
200 to the problem size, N. For a d-dimensional torus network, P / Nd=d�1. The pro-
201 portionality constant is a ratio of work per subdomain to the product of synchro-
202 nization frequency and internode communication latency.

203 3.1. Scalability bottlenecks

204 In Table 1, we present a closer look at the relative cost of computation for PETSc-
205 FUN3D for a ®xed-size problem of 2.8 million vertices on the ASCI Red machine,
206 from 128 to 3072 nodes. The intent here is to identify the factors that retard the
207 scalability.
208 From Table 1, we observe that the bu�er-to-bu�er time for global reductions for
209 these runs is relatively small and does not grow on this excellent network. The
210 primary factors responsible for the increased overhead of communication are the
211 implicit synchronizations and the ghost point updates (interprocessor data scatters).
212 Interestingly, the increase in the percentage of time (3±10%) for the scatters results
213 more from algorithmic issues than from hardware/software limitations. With an
214 increase in the number of subdomains, the percentage of grid point data that must be
215 communicated also rises. For example, the total amount of nearest neighbor data
216 that must be communicated per iteration for 128 subdomains is 2 gigabytes, while
217 for 3072 subdomains it is 8 gigabytes. Although more network wires are available
218 when more processors are employed, scatter time increases. If problem size and

Table 1

Scalability bottlenecks on ASCI Red for a ®xed-size 2.8 M-vertex casea

Number of processors Percentage of time

Global reductions Implicit synchronizations Ghost point scatters

128 5 4 3

512 3 7 5

3072 5 14 10

a The preconditioner used in these results is block Jacobi with ILU(1) in each subdomain. We observe that

the principal nonscaling factor is the implicit synchronization.
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219 processor count are scaled together, we would expect scatter times to occupy a ®xed
220 percentage of the total and load imbalance to be reduced at high granularity.

221 3.2. E�ect of partitioning strategy

222 Mesh partitioning has a dominant e�ect on parallel scalability for problems
223 characterized by (almost) constant work per point. As shown above, poor load
224 balance causes idleness at synchronization points, which are frequent in implicit
225 methods (e.g., at every conjugation step in a Krylov solver). With NKS methods,
226 then, it is natural to strive for a very well balanced load. The p-MeTiS algorithm in
227 the MeTiS package [16], for example, provides almost perfect balancing of the
228 number of mesh points per processor. However, balancing work alone is not su�-
229 cient. Communication must be balanced as well, and these objectives are not entirely
230 compatible. Fig. 1 shows the e�ect of data partitioning using p-MeTiS, which tries to
231 balance the number of nodes and edges on each partition, and k-MeTiS, which tries
232 to reduce the number of noncontiguous subdomains and connectivity of the sub-
233 domains. Better overall scalability is observed with k-MeTiS, despite the better load
234 balance for the p-MeTiS partitions. This is due to the slightly poorer numerical
235 convergence rate of the iterative NKS algorithm with the p-MeTiS partitions. The
236 poorer convergence rate can be explained by the fact that the p-MeTiS partitioner
237 generates disconnected pieces within a single ``subdomain,'' e�ectively increasing the
238 number of blocks in the block Jacobi or additive Schwarz algorithm and increasing
239 the size of the interface. The convergence rates for block iterative methods degrade
240 with increasing number of blocks, as discussed in Section 5.

Processors

P
ar

al
le

lS
pe

ed
up

128 256 384 512 640 768 896 1024
1

2

3

4

5

6

pmetis
kmetis

Fig. 1. Parallel speedup relative to 128 processors on a 600 MHz Cray T3E for a 2.8 M-vertex case,

showing the e�ect of partitioning algorithms k-MeTiS, and p-MeTiS.
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241 3.3. Domain-based and/or instruction-level parallelism

242 The performance results above are based on subdomain parallelism using the
243 message passing interface (MPI) [13]. With the availability of large scale SMP
244 clusters, di�erent software models for parallel programming require a fresh assess-
245 ment. For machines with physically distributed memory, MPI has been a natural and
246 successful software model. For machines with distributed shared memory and
247 nonuniform memory access, both MPI and OpenMP have been used with respect-
248 able parallel scalability. For clusters with two or more SMPs on a single node, the
249 mixed software model of threads within a node (OpenMP being a special case of
250 threads because of the potential for highly e�cient handling of the threads and
251 memory by the compiler) and MPI between the nodes appears natural. Several re-
252 searchers (e.g., [4,20]) have used this mixed model with reasonable success.
253 We investigate the mixed model by employing OpenMP only in the ¯ux calcula-
254 tion phase. This phase takes over 60% of the execution time on ASCI Red and is an
255 ideal candidate for shared-memory parallelism because it does not su�er from the
256 memory bandwidth bottleneck (see Section 4). In Table 2, we compare the perfor-
257 mance of this phase when the work is divided by using two OpenMP threads per
258 node with the performance when the work is divided using two independent MPI
259 processes per node. There is no communication in this phase. Both processors work
260 with the same amount of memory available on a node; in the OpenMP case, it is
261 shared between the two threads, while in the case of MPI it is divided into two
262 address spaces.
263 The hybrid MPI/OpenMP programming model appears to be a more e�cient way
264 to employ shared memory than are the heavyweight subdomain-based processes
265 (MPI alone), especially when the number of nodes is large. The MPI model works
266 with larger number of subdomains (equal to the number of MPI processors), re-
267 sulting in slower rate of convergence. The hybrid model works with fewer chunkier
268 subdomains (equal to the number of nodes) that result in faster convergence rate and
269 shorter execution time, despite the fact that there is some redundant work when the
270 data from the two threads are combined due to the lack of a vector-reduce operation
271 in the OpenMP standard (version 1) itself. Speci®cally, some redundant work arrays
272 must be allocated that are not present in the MPI code. The subsequent gather

Table 2

Execution time on the 333 MHz Pentium Pro ASCI Red machine for function evaluations only for a 2.8

M-vertex case, showing di�erences in exploiting the second processor sharing the same memory with either

OpenMP instruction-level parallelism (number of subdomains equals the number of nodes) or MPI do-

main-level parallelism (number of subdomains is equal to the number of processes per node)

Nodes MPI/OpenMP threads per node (s) MPI processes per node (s)

1 2 1 2

256 483 261 456 258

2560 76 39 72 45

3072 66 33 62 40
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273 operations (which tend to be memory bandwidth bound) can easily o�set the ad-
274 vantages accruing from the low-latency shared-memory communication. One way to
275 get around this problem is to use coloring strategies to create the disjoint work sets,
276 but this takes away the ease and simplicity of the parallelization step promised by the
277 OpenMP model.

278 4. Single-processor performance modeling and tuning

279 In this section, we describe the details of per processor performance and tuning.
280 Since the gap between memory and CPU speeds is ever widening [14] and algo-
281 rithmically optimized PDE codes do relatively little work per data item, it is crucial
282 to e�ciently utilize the data brought into the levels of memory hierarchy that are
283 close to the CPU. To achieve this goal, the data structure storage patterns for pri-
284 mary (e.g., momenta and pressure) and auxiliary (e.g., geometry and constitutive
285 parameter) ®elds should adapt to hierarchical memory. Three simple techniques have
286 proved very useful in improving the performance of the FUN3D code, which was
287 originally tuned for vector machines. These techniques are interlacing, blocking, and
288 edge reordering. They are within the scope of automated compiler transformations
289 in structured grid codes but, so far must be implemented manually in unstructured
290 codes.

291 4.1. Interlacing, blocking, and edge reordering

292 Table 3 shows the e�ectiveness of interlacing, block, and edge reordering (de-
293 scribed below) on one processor of the SGI Origin2000. The combination of the
294 three e�ects can enhance overall execution time by a factor of 5.7. To further un-
295 derstand the dramatic e�ect of reordering the edges, we carried out hardware counter
296 pro®ling on the R10000 processor. Fig. 2 shows that edge reordering reduces the

Table 3

Execution times for Euler ¯ow over M6 wing for a ®xed-size grid of 22,677 vertices (90,708 DOFs in-

compressible; 113,385 DOFs compressible)a

Enhancements Results

Field

interlacing

Structural

blocking

Edge

reordering

Incompressible Compressible

Time/step (s) Ratio Time/step (s) Ratio

83.6 ± 140.0 ±

� 36.1 2.31 57.5 2.44

� � 29.0 2.88 43.1 3.25

� 29.2 2.86 59.1 2.37

� � 23.4 3.57 35.7 3.92

� � � 16.9 4.96 24.5 5.71

a The processor is a 250 MHz MIPS R10000. Activation of a layout enhancement is indicated by ``�'' in

the corresponding column.
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297 misses in the translation lookaside bu�er (TLB) cache by two orders of magnitude,
298 while secondary cache misses (which are very expensive) are reduced by a factor of
299 3.5. (The TLB cache is used in virtual memory address translation.)
300 Table 4 compares the original and optimized per processor performance for sev-
301 eral other architectures. The ratio of improvement in the last column varies from 2.6
302 to 7.8. Improvement ratios are averages over the entire code; di�erent subroutines
303 bene®t to di�erent degrees.

304 4.1.1. Field interlacing
305 Field interlacing creates the spatial locality for the data items needed successively
306 in time. This is achieved by choosing

u1; v1;w1; p1; u2; v2;w2; p2; . . .

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

Base NOER Interlacing NOER Blocking NOER
Base Interlacing Blocking

Secondary Cach Misses

1.00E + 04

1 .00E + 05

1 .00E + 06

1 .00E + 07

1 .00E + 08

1 .00E + 09

B ase N O E R Interlacing  N O E R B locking  N O E R
B ase Interlacing B locking

TLB Misses

Fig. 2. TLB misses (log scale) and secondary cache misses (linear scale) for a 22,677-vertex case on a 250

MHz R10000 processor, showing dramatic improvements in data locality due to data ordering and

blocking techniques. (``NOER'' denotes no edge ordering; otherwise edges are reordered by default.)

Table 4

Comparison of optimized to original performance, absolute and as percentage of peak, for PETSc-

FUN3D on many processor families

Processor Clock Peak Opt.

MF/s

Orig.

MF/s

Opt.%

peak

Orig.%

peak

Ratio

R10000 250 500 127 26 25.4 5.2 4.9

RS6000/

P3

200 800 163 32 20.3 4.0 5.1

RS6000/

P2

120 480 117 15 24.3 3.1 7.8

RS6000/

604e

333 666 66 15 9.9 2.3 4.4

Pentium

Pro

333 333 60 21 18.8 6.3 3.0

Alpha

21164

600 1200 91 16 7.6 1.3 5.7

Ultra II 400 800 71 20 8.9 2.5 3.6
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308 in place of

u1; u2; . . . ; v1; v2; . . . ;w1;w2; . . . ; p1; p2; . . .

310 for a calculation that uses u; v;w; p together. We denote the ®rst ordering ``inter-
311 laced'' and the second ``noninterlaced.'' The noninterlaced storage pattern is good
312 for vector machines. For cache-based architectures, the interlaced storage pattern
313 has many advantages: (1) it provides high reuse of data brought into the cache, (2) it
314 makes the memory references closely spaced, which in turn reduces the TLB misses,
315 and (3) it decreases the size of the working set of the data cache(s), which reduces the
316 number of con¯ict misses.

317 4.1.2. Structural blocking
318 Once the ®eld data are interlaced, it is natural to use a block storage format for the
319 Jacobian matrix of a multicomponent system of PDEs. The block size is the number
320 of components (unknowns) per mesh point. As shown for the sparse matrix±vector
321 case in [10], this structural blocking signi®cantly reduces the number of integer loads
322 and enhances the reuse of the data items in registers. It also reduces the memory
323 bandwidth required for optimal performance.

324 4.1.3. Edge and node reorderings
325 In the original FUN3D code, the edges are colored for good vector performance.
326 No pair of nodes in the same discretization stencil share a color. This strategy results
327 in a very low cache line reuse. In addition, since consecutive memory references may
328 be far apart, the TLB misses are a grave concern. About 70% of the execution time in
329 the original vector code is spent serving TLB misses. As shown in Fig. 2, this
330 problem is e�ectively addressed by reordering the edges.
331 The edge reordering we have used sorts the edges in increasing order by the node
332 number at the one end of each edge. In e�ect, this converts an edge-based loop into a
333 vertex-based loop that reuses vertex-based data items in most or all of the stencils
334 that reference them several times before discarding it. Since a loop over edges goes
335 over a node's neighbors ®rst, edge reordering (in conjunction with a bandwidth
336 reducing ordering for nodes) results in memory references that are closely spaced.
337 Hence, the number of TLB misses is reduced signi®cantly. For vertex ordering, we
338 have used the Reverse Cuthill McKee (RCM) [7], which is known in the linear al-
339 gebra literature to reduce cache misses by enhancing spatial locality.

340 4.2. Performance analysis of the sparse matrix±vector product

341 The sparse matrix±vector product (or ``matvec'') is an important part of many
342 iterative solvers in its own right, and also representative of the data access patterns of
343 explicit grid-based stencil operations and recurrences. While detailed performance
344 modeling of this operation can be complex, particularly when data reference patterns
345 are included [26,27,29], a simpli®ed analysis can still yield upper bounds on the
346 achievable performance of this operation.
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347 In [10], we estimate the memory bandwidth required by sparse matvecs in un-
348 structured grid codes, after making some simplifying assumptions that idealize the
349 rest of the memory system. We assume that there are no con¯ict misses, meaning that
350 each matrix and vector element is loaded into cache only once until ¯ushed by ca-
351 pacity misses. We also assume that the processor never waits on a memory reference;
352 that is, that any number of loads and stores are satis®ed in a single cycle.
353 The matrix is stored in compressed rows (equivalent to PETSc's AIJ format) or
354 block AIJ (BAIJ format) [3]. For each nonzero in the matrix, we transfer one integer
355 (giving the column incidence) and two doubles (the matrix element and the corre-
356 sponding row vector element), and we do one ¯oating-point multiply-add (fmadd)
357 operation (which is two ¯ops). Finally, we store the output vector element. Including
358 loop control and addressing overheads, this leads (see [10]) to a data volume estimate
359 of 12.36 bytes per fmadd operation for a sample PETSc-FUN3D sparse Jacobian.
360 This gives us an estimate of the bandwidth required in order for the processor to do
361 all 2 � nnz ¯ops at its peak speed, where nnz is the number of nonzeros in the Jacobian.
362 Unfortunately, bandwidth as measured by the STREAM [21] benchmark is typically
363 an order of magnitude less. Alternatively, given a measured memory bandwidth
364 rating, we can predict the maximum achievable rate of ¯oating-point operations.
365 Finally, we can measure the achieved ¯oating-point operations. The last four col-
366 umns of Table 5 summarize the results of this combined theoretical/experimental
367 study for a matrix with 90,708 rows and 5,047,120 nonzero entries from a PETSc-
368 FUN3D application (incompressible) with four unknowns per vertex. For this ma-
369 trix, with a block size of four, the column incidence array is smaller by a factor of the
370 block size. We observe that the blocking helps signi®cantly by reducing the memory
371 bandwidth requirement. In [10], we also describe how multiplying more than one
372 vector at a time requires less memory bandwidth per matvec because of reuse of
373 matrix elements. We can multiply four vectors in about 1.5 times the time needed to
374 multiply a single vector. If the three additional vectors can be employed in a block
375 Krylov method, they are almost free, so algorithmic work on block-Krylov methods
376 is highly recommended.
377 To further incriminate memory bandwidth as the bottleneck to the execution time
378 of sparse linear solvers, we have performed an experiment that e�ectively doubles the
379 available memory bandwidth. The linear solver execution time is dominated by the

Table 5

E�ect of memory bandwidth on the performance of sparse matrix±vector products on a 250 MHz R10000

processora

Format Bytes/fmadd Bandwidth (MB/s) M¯op/s

Required Achieved Ideal Achieved

AIJ 12.36 3090 276 58 45

BAIJ 9.31 2327 280 84 55

a The STREAM benchmark memory bandwidth [21] is 358 MB/s; this value of memory bandwidth is used

to calculate the ideal M¯op/s. The achieved values of memory bandwidth and M¯op/s are measured using

hardware counters.
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380 cost of preconditioning when (as in our production PETSc-FUN3D code) the Ja-
381 cobian-vector products required in the Krylov methods are performed in a matrix-
382 free manner by ®nite-di�erencing a pair of ¯ux evaluations. Since the precondi-
383 tioning is already very approximate, we have implemented the data structures storing
384 PETSc's preconditioners in single precision while preserving double-precision in all
385 other parts of the code. Once an element of the preconditioner is in the CPU, it is
386 padded to 64 bits with trailing zeros, and all arithmetic is done with this (consistent
387 but inaccurate) double precision value. The consistency is required to suppress the
388 contamination of the Krylov space with roundo� errors. The loss of accuracy in the
389 preconditioner is irrelevant to the ®nal result, which satis®es the true linearized
390 Newton correction equation to required precision, and it is nearly irrelevant to the
391 convergence rate of the preconditioned iteration. However, it is very relevant to the
392 execution time, as shown in Table 6. Asymptotically, as the preconditioner matrix
393 becomes the dominant noncacheable object in the workingset, the running time of
394 the linear solution is halved, as evidenced by a comparison of columns 2 and 3 in
395 Table 6.
396 The importance of memory bandwidth to the overall performance is suggested by
397 the single-processor performance of PETSc-FUN3D shown in Fig. 3. The perfor-
398 mance of PETSc-FUN3D is compared with the peak performance and the result of
399 the STREAM benchmark [21], which measures achievable performance for memory
400 bandwidth limited computations. These comparisons show that the STREAM re-
401 sults are much better indicators of realized performance than the peak numbers. The
402 parts of the code that are memory bandwidth-limited (like the sparse triangular
403 preconditioner solution phase, which is responsible for about 25% of the overall
404 execution time) are bound to show poor performance, as compared with dense
405 matrix±matrix operations, which often achieve 80±90% of peak.
406 The importance of reducing the memory bandwidth requirements of algorithms is
407 emphasized by reference to the hardware pro®les of the ASCI machines, which are
408 scheduled to reach a peak of 100 T¯op/s by 2004. Table 7 shows the peak processing
409 and memory bandwidth capacities of the ®rst four of these machines. The ``white''
410 machine is being delivered to the US Department of Energy at the time of this
411 writing. The ``blue'' and ``red'' machines rank in the top three spots of the Top 500
412 installed computers as of June 2000 [9]. The last column shows that memory

Table 6

Execution times on a 250 MHz R10000 processor for the linear algebra phase of a 357,900-vertex case with

single- or double-precision storage of the preconditioner matrix

Number of processors Computational phase

Linear solve (s) Overall (s)

Double Single Double Single

16 223 136 746 657

64 60 34 205 181

120 31 16 122 106
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413 bandwidth, in double precision words per second, is o� by an order of magnitude
414 from what is required if each cached word is used only once. As the raw speed of the
415 machines is increased, this ratio does not improve. Therefore, algorithms must im-
416 prove to emphasize locality. Several proposals for discretization and solution
417 methods that improve spatial or temporary locality are made in [19]. Many of these
418 require special features in memory control hardware and software that exist today
419 but are not commonly exploited by computational modelers in high-level scienti®c
420 languages.

421 4.3. Performance analysis of the ¯ux calculation

422 Even parts of the code that are not memory intensive often achieve much less than
423 peak performance because of the limits on the number of basic operations that can
424 be performed in a single clock cycle [10]. This is true for the ¯ux calculation routine
425 in PETSc-FUN3D, which consumes approximately 60% of the overall execution
426 time.
427 While looping over each edge, the ¯ow variables from the vertex-based arrays are
428 read, many ¯oating-point operations are done, and residual values at each node of

Table 7

Peak processing and memory bandwidth pro®les of the ASCI machines

Platform Number

procs.

Sys. peak

(TF/s)

Proc. peak

(MF/s)

BW/proc.

(MB/s)

BW/proc.

(MW/s)

(MF/s)/

(MW/s)

White 8192 12.3 1500 1000 125.0 12.0

BlueMtn 6144 3.1 500 390 48.8 10.2

BluePac 5808 3.9 666 360 45.0 14.8

Red 9632 3.2 333 266 33.3 10.0
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Fig. 3. Sequential performance of PETSc-FUN3D for a 22,677-vertex case.
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429 the edge are updated. Because of the large number of ¯oating-point operations in
430 this phase, memory bandwidth is not (yet) a limiting factor on machines at the high
431 end. Measurements on our Origin2000 support this; only 57 MB/s are needed to keep
432 the ¯ux calculation phase at full throttle [10]. However, the measured ¯oating-point
433 performance is still just 209 M¯op/s out of a theoretical peak of 500 M¯op/s. This is
434 substantially less than the performance that can be achieved with dense matrix±
435 matrix operations.
436 To understand where the limit on the performance of this part of the code comes
437 from, we take a close look at the assembly code for the ¯ux calculation function.
438 This examination yields the following workload mix for the average iteration of the
439 loop over edges: 519 total instructions, 111 integer operations, 250 ¯oating-point
440 instructions of which there are 55 are fmadd instructions (for 195� 2� 55 � 305
441 ¯ops), and 155 memory references. Most contemporary processors can issue only
442 one load or store in one cycle. Since the number of ¯oating-point instructions is less
443 than the number of memory references, the code is bound to take at least as many
444 cycles as the number of loads and stores.
445 If all operations could be scheduled optimally for this hardware ± say, one
446 ¯oating-point instruction, one integer instruction, and one memory reference per
447 cycle ± this code would take 250 instructions and achieve 305 M¯op/s. However,
448 dependencies between these instructions, as well as complexities in scheduling the
449 instructions [22,24], make it very di�cult for the programmer to determine the
450 number of cycles that this code would take to execute. Fortunately, many compilers
451 provide this information as comments in the assembly code. For example, on the
452 Origin2000, when the code is compiled with cache optimizations turned o� (con-
453 sistent with our assumption that data items are in primary cache for the purpose of
454 estimating this bound), the compiler estimates that the above work can be completed
455 in about 325 cycles. This leads to a theoretical performance bound of 235 M¯op/s
456 (47% of the peak on the 250 MHz dual-issue processor). We actually measure 209
457 M¯op/s using hardware counters. This shows that the performance in this phase of
458 the computation is restricted by the instruction scheduling limitation. A detailed
459 analytical model for this phase of computation is under way.

460 4.4. Performance comparison

461 In Fig. 4, we compare three performance bounds: the peak performance (based on
462 the clock frequency and the maximum number of ¯oating-point operations per cy-
463 cle), the performance predicted from the memory bandwidth limitation, and the
464 performance based on operation issue limitation. For the sparse matrix±vector
465 multiply, it is clear that the memory-bandwidth limit on performance is a good
466 approximation. The greatest di�erences between the performance observed and
467 predicted by memory bandwidth are on the systems with the smallest caches (IBM
468 SP and T3E), where our assumption that there are no con¯ict misses is least likely to
469 be valid.
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470 5. Convergence scalability

471 The convergence rates and, therefore, the overall parallel e�ciencies of additive
472 Schwarz methods are often dependent on subdomain granularity. Except when ef-
473 fective coarse-grid operators and intergrid transfer operators are known, so that
474 optimal multilevel preconditioners can be constructed, the number of iterations to
475 convergence tends to increase with granularity for elliptically controlled problems,
476 for either ®xed or memory-scaled problem sizes. In practical large-scale applications,
477 however, the convergence rate degradation of single-level additive Schwarz is
478 sometimes not as serious as the scalar, linear elliptic theory would suggest. Its e�ects
479 are mitigated by several factors, including pseudo-transient nonlinear continuation
480 and dominant intercomponent coupling. The former parabolizes the operator, en-
481 dowing diagonal dominance. The latter renders the o�-diagonal coupling less critical
482 and, therefore, less painful to sever by domain decomposition. The block diagonal
483 coupling can be captured fully in a point-block ILU preconditioner.

484 5.1. Convergence of Schwarz methods

485 For a general exposition of Schwarz methods for linear problems, see [25]. Assume
486 a d-dimensional isotropic problem. Consider a unit aspect ratio domain with quasi-
487 uniform mesh parameter h and quasi-uniform subdomain diameter H. Then problem
488 size N � hÿd , and, under the one-subdomain-per-processor assumption, processor
489 number P � Hÿd . Consider four preconditioners: point Jacobi, subdomain Jacobi, 1-
490 level additive Schwarz (subdomain Jacobi with overlapped subdomains), and 2-level
491 additive Schwarz (overlapped subdomains with a global coarse problem with ap-
492 proximately one degree-of-freedom per subdomain). The ®rst two can be thought of
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Fig. 4. Three performance bounds for sparse matrix±vector product; the bounds based on memory

bandwidth and instruction scheduling are much more closer to the observed performance than the the-

oretical peak of the processor. Memory bandwidth values are taken from the STREAM benchmark

Website.
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493 as degenerate Schwarz methods (with zero overlap, and possibly point-sized sub-
494 domains). Consider acceleration of the Schwarz method by a Krylov method such as
495 conjugate gradients or one of its many generalizations to nonsymmetric problems
496 (e.g., GMRES). Krylov±Schwarz iterative methods typically converge in a number
497 of iterations that scales as the square-root of the condition number of the Schwarz-
498 preconditioned system. Table 8 lists the expected number of iterations to achieve a
499 given reduction ratio in the residual norm. The ®rst line of this table pertains to
500 diagonally scaled CG, a common default parallel implicit method, but one that is not
501 very algorithmically scalable, since the iteration count degrades with a power of N.
502 The results in this table were ®rst derived for symmetric de®nite operators with exact
503 solves on each subdomain, but they have been extended to operators with non-
504 symmetric and inde®nite components and inexact solves on each subdomain.
505 The intuition behind this table is the following: errors propagate from the interior
506 to the boundary in steps that are proportional to the largest implicit aggregate in the
507 preconditioner, whether pointwise (in N) or subdomainwise (in P). The use of
508 overlap avoids the introduction of high-energy-norm solution near discontinuities at
509 subdomain boundaries. The 2-level method projects out low-wave number errors at
510 the price of solving a global problem.
511 Only the 2-level method scales perfectly in convergence rate (constant, indepen-
512 dent of N and P), like a traditional multilevel iterative method. However, the 2-level
513 method shares with multilevel methods a nonscalable cost-per-iteration from the
514 necessity of solving a coarse-grid system of size O�P �. Unlike recursive multilevel
515 methods, a 2-level Schwarz method may have a rather ®ne coarse grid, for example,
516 H � O�h1=2�, which makes it less scalable overall. Parallelizing the coarse grid solve
517 is necessary. Neither extreme of a fully distributed or a fully redundant coarse solve
518 is optimal, but rather something in between.

519 5.2. Algorithmic tuning for WNKS solver

520 The following is an incomplete list of parameters that need to be tuned in various
521 phases of a pseudo-transient Newton±Krylov±Schwarz algorithm.

· Nonlinear robustness continuation parameters: discretization order, initial time-
523 step, exponent of timestep evolution law.

Table 8

Iteration count scaling of Schwarz-preconditioned Krylov methods, translated from the theory into

problem size N and processor number P, assuming quasi-uniform grid, quasi-unit aspect ratio grid and

decomposition, and quasi-isotropic operator

Preconditioning Iteration count

In 2D In 3D

Point Jacobi O�N 1=2� O�N 1=3�
Subdomain Jacobi O��NP�1=4� O��NP�1=6�
1-level Additive Schwarz O�P 1=2� O�P 1=3�
2-level Additive Schwarz O�1� O�1�

W.D. Gropp et al. / Parallel Computing 000 (2000) 000±000 17

PARCO 1590



UNCORRECTED
PROOF

· Newton parameters: convergence tolerance on each timestep, globalization strat-
525 egy (line search or trust region parameters), refresh frequency for Jacobian pre-
526 conditioner.

· Krylov parameters: convergence tolerance for each Newton correction, restart di-
528 mension of Krylov subspace, overall Krylov iteration limit, orthogonalization
529 mechanism.

· Schwarz parameters: subdomain number, quality of subdomain solver (®ll level,
531 number of sweeps), amount of subdomain overlap, coarse grid usage.

· Subproblem parameters: ®ll level, number of sweeps.

533 5.2.1. Parameters for pseudo-transient continuation
534 Although asymptotically superlinear, solution strategies based on Newton's
535 method must often be approached through pseudo-timestepping. For robustness,
536 pseudo-timestepping is often initiated with very small timesteps and accelerated
537 subsequently. However, this conventional approach can lead to long ``induction''
538 periods that may be bypassed by a more aggressive strategy, especially for the
539 smooth ¯ow ®elds.
540 The timestep is advanced toward in®nity by a power-law variation of the switched
541 evolution/relaxation (SER) heuristic of Van Leer and Mulder [23]. To be speci®c,
542 within each residual reduction phase of computation, we adjust the timestep ac-
543 cording to

N `
CFL � N 0

CFL

kf �u0�k
kf �u`ÿ1�k

� �p

;

545 where p is a tunable exponent close to unity. Fig. 5 shows the e�ect of initial CFL
546 number (the Courant±Friedrich±Levy number, a dimensionless measure of the
547 timestep size), N 0

CFL, on the convergence rate. In general, the best choice of initial
548 CFL number is dependent on the grid size and Mach number. A small CFL adds
549 nonlinear stability far from the solution but retards the approach to the domain of
550 superlinear convergence of the steady state. For ¯ows with near discontinuities, it is
551 safer to start with small CFL numbers.
552 In ¯ows with shocks, high-order (second or higher) discretization for the con-
553 vection terms should be activated only after the shock position has settled down. We
554 begin such simulations with a ®rst-order upwind scheme and switch to second-order
555 after a certain residual reduction. The exponent (p) in the power law above is
556 damped to 0.75 for robustness when shocks are expected to appear in second-order
557 discretizations. For ®rst-order discretizations, this exponent may be as large as 1.5. A
558 reasonable switchover point of the residual norm between ®rst-order and second-
559 order discretization phases has been determined empirically. In shock-free simula-
560 tions we use second-order accuracy throughout. Otherwise, we normally reduce the
561 ®rst two to four orders of residual norm with the ®rst-order discretization, then
562 switch to second. This order of accuracy applies to the ¯ux calculation. The pre-
563 conditioner matrix is always built out of a ®rst-order analytical Jacobian matrix.
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564 5.2.2. Parameters for Krylov solver
565 We use an inexact Newton method on each timestep [8]; that is, the linear system
566 within each Newton iteration is solved only approximately. Especially in the be-
567 ginning of the solution process, this saves a signi®cant amount of execution time. We
568 have considered the following three parameters in this phase of computation: con-
569 vergence tolerance, the number of simultaneously storable Krylov vectors, and the
570 total number of Krylov iterations. The typical range of variation for the inner
571 convergence tolerance is 0.001±0.01. We have experimented with progressively
572 tighter tolerances near convergence, and saved Newton iterations thereby, but did
573 not save time relative to cases with loose and constant tolerance. The Krylov sub-
574 space dimension depends largely on the problem size and the available memory. We
575 have used values in the range of 10±30 for most of the problems. The total number of
576 linear iterations (within each nonlinear solve) has been varied from 10 for the
577 smallest problem to 80 for the largest one. A typical number of ®ne-grid ¯ux eval-
578 uations for achieving 10ÿ10 residual reduction on a million-vertex Euler problem is a
579 couple of thousand.

580 5.2.3. Additive Schwarz preconditioner
581 Table 9 explores two quality parameters for the additive Schwarz preconditioner:
582 subdomain overlap and quality of the subdomain solve using incomplete factor-
583 ization. We exhibit execution time and iteration count data from runs of PETSc-
584 FUN3D on the ASCI Red machine for a ®xed-size problem with 357,900 grid points
585 and 1,789,500 degrees-of-freedom. These calculations were performed using
586 GMRES(20), one subdomain per processor (without overlap for block Jacobi and
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number on convergence rate. The convergence tuning of nonlinear problems is notoriously case speci®c.
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587 with overlap for ASM), and ILU(k) where k varies from 0 to 2, and with the natural
588 ordering in each subdomain block. The use of ILU(0) with natural ordering on the
589 ®rst-order Jacobian, while applying a second-order operator, allows the factorization
590 to be done in place, with or without overlap. However, the overlap case does require
591 forming an additional data structure on each processor to store matrix elements
592 corresponding to the overlapped regions.
593 From Table 9 we see that the larger overlap and more ®ll help in reducing the total
594 number of linear iterations as the number of processors increases, as theory and
595 intuition predict. However, both increases consume more memory, and both result in
596 more work per iteration, ultimately driving up execution times in spite of faster
597 convergence. Best execution times are obtained for any given number of processors
598 for ILU(1), as the number of processors becomes large (subdomain size small), for
599 zero overlap.
600 The additional computation/communication costs for additive Schwarz (as com-
601 pared with block Jacobi) are the following.
602 1. Calculation of the matrix couplings among processors. For block Jacobi, these

603 need not be calculated.
604 2. Communication of the ``overlapped'' matrix elements to the relevant processors.
605 3. Factorization of the larger local submatrices.
606 4. Communication of the ghost points in the application of the ASM preconditioner.

607 We use restricted additive Schwarz method (RASM) [6], which communicates on-
608 ly when setting up the overlapped subdomain problems and ignores the updates

Table 9

Execution times and linear iteration counts on the 333 MHz Pentium Pro ASCI Red machine for a

357,900-vertex case, showing the e�ect of subdomain overlap and incomplete factorization ®ll level in the

additive Schwarz preconditionera

ILU(0) in each subdomain

Number of

processors

Overlap

0 1 2

Time (s) Linear Its Time (s) Linear Its Time (s) Linear Its

32 688 930 661 816 696 813

64 371 993 374 876 418 887

128 210 1052 230 988 222 872

ILU(1) in each subdomain

32 598 674 564 549 617 532

64 334 746 335 617 359 551

128 177 807 178 630 200 555

ILU(2) in each subdomain

32 688 527 786 441 ) )
64 386 608 441 488 531 448

128 193 631 272 540 313 472

a The best execution times for each ILU ®ll level and number of processors are in boldface in each row.

20 W.D. Gropp et al. / Parallel Computing 000 (2000) 000±000

PARCO 1590



UNCORRECTED
PROOF

609 coming from the overlapped regions. This saves a factor of two in local commu-
610 nication relative to standard ASM.
611 5. Inversion of larger triangular factors in each iteration.
612 The execution times reported in Table 9 are highly dependent on the machine
613 used, since each of the additional computation/communication costs listed above
614 may shift the computation past a knee in the performance curve for memory
615 bandwidth, communication network, and so on.

616 5.2.4. Other algorithmic tuning parameters
617 In [11] we highlight some additional tunings that have yielded good results in our
618 context. Some subsets of these parameters are not orthogonal but interact strongly
619 with each other. In addition, optimal values of some of these parameters depend on
620 the grid resolution. We are currently using derivative-free asynchronous parallel
621 direct search algorithms [15] to more systematically explore this large parameter
622 space.
623 We emphasize that the discussion in this section does not pertain to discretization
624 parameters, which constitute another area of investigation ± one that ultimately
625 impacts performance at a higher level. The algorithmic parameters discussed in this
626 section do not a�ect the accuracy of the discrete solution, but only the rate at which
627 the solution is attained. In all of our experiments, the goal has been to minimize the
628 overall execution time, not to maximize the ¯oating-point operations per second.
629 There are many tradeo�s that enhance M¯op/s rates but retard execution comple-
630 tion.

631 6. Large-scale demonstration runs

632 We use PETSc's pro®ling and logging features to measure the parallel perfor-
633 mance. PETSc logs many di�erent types of events and provides valuable information
634 about time spent, communications, load balance, and so forth for each logged event.
635 PETSc uses manual counting of ¯ops, which are afterwards aggregated over all the
636 processors for parallel performance statistics. We have observed that the ¯ops re-
637 ported by PETSc are close to (within 10% of) the values statistically measured by
638 hardware counters on the R10000 processor.
639 PETSc uses the best timers available at the user level in each processing envi-
640 ronment. In our rate computations, we exclude the initialization time devoted to I/O
641 and data partitioning. To suppress timing variations caused by paging in the exe-
642 cutable from disk, we preload the code into memory with one nonlinear iteration,
643 then ¯ush, reload the initial iterate, and begin performance measurements.
644 Since we are solving large ®xed-size problems on distributed-memory machines, it
645 is not reasonable to base parallel scalability on a uniprocessor run, which would
646 thrash the paging system. Our base processor number is such that the problem has
647 just ®t into the local memory.
648 The same ®xed-size problem is run on large ASCI Red con®gurations with sample
649 scaling results shown in Fig. 6. The implementation e�ciency is 91% in going from
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650 256 to 3072 nodes. For the data in Fig. 6, we employed the -procs 2 runtime
651 option on ASCI Red. This option enables 2-processor-per-node multithreading
652 during threadsafe, communication-free portions of the code. We have activated this
653 feature for the ¯oating-point-intensive ¯ux computation subroutine alone. On 3072
654 nodes, the largest run we have been able to make on the unclassi®ed side of the

Fig. 6. Parallel performance for a ®xed size mesh of 2.8 M vertices run on up to 3072 ASCI Red 333 MHz

Pentium Pro processors.
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655 machine to date, the resulting G¯op/s rate is 227 (when the preconditioner is stored
656 in double precision). Undoubtedly, further improvements to the algebraic solver
657 portion of the code are also possible through multithreading, but the additional
658 coding work does not seem justi®ed at present.
659 Fig. 7 shows aggregate ¯op/s performance and a log±log plot showing execution
660 time for our largest case on the three most capable machines to which we have thus
661 far had access. In both plots of this ®gure, the dashed lines indicate ideal behavior.
662 Note that although the ASCI Red ¯op/s rate scales nearly linearly, a higher fraction
663 of the work is redundant at higher parallel granularities, so the execution time does
664 not drop in exact proportion to the increase in ¯op/s. The number of vertices per
665 processor ranges from about 22,000 to fewer than 1000 over the range shown. We
666 point out that for just 1000 vertices in a three-dimensional domain, about half are on
667 the interface (e.g., 488 interface vertices on a 10� 10� 10 cube).

Fig. 7. Giga¯op/s ratings and execution times on ASCI Red (up to 3072 dual processor nodes), ASCI

Paci®c Blue (up to 768 processors), and a Cray T3E (up to 1024 processors) for a 2.8 M-vertex case, along

with dashed lines indicating ``perfect'' scalings.
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668 7. Conclusions

669 Large-scale implicit computations have matured to a point of practical use on
670 distributed/shared memory architectures for static-grid problems. More sophisti-
671 cated algorithms, including solution adaptivity, inherit the same features within
672 static-grid phases, of course, but require extensive additional infrastructure for dy-
673 namic parallel adaptivity, rebalancing, and maintenance of e�cient, consistent dis-
674 tributed data structures.
675 Unstructured implicit CFD solvers are amenable to scalable implementation, but
676 careful tuning is needed to obtain the best product of per-processor e�ciency and
677 parallel e�ciency. The number of cache misses and the achievable memory band-
678 width are two important parameters that should be considered in determining an
679 optimal data storage pattern. The impact of data reorganizing strategies (interlacing,
680 blocking, and edge/vertex reorderings) is demonstrated through the sparse matrix±
681 vector product model and hardware counter pro®ling.
682 Given contemporary high-end architecture, critical research directions for solution
683 algorithms for systems modeled by PDEs are: (1) multivector algorithms and less
684 synchronous algorithms, and (2) hybrid programming models. To in¯uence future
685 architectures while adapting to current ones, we recommend adoption of new
686 benchmarks featuring implicit methods on unstructured grids, such as the applica-
687 tion featured herein.
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