
Latency, Bandwidth, and Concurrent Issue Limitations
in High-Performance CFD

http://www.mcs.anl.gov/petsc-fun3d

William Gropp, Argonne National Laboratory

Dinesh Kaushik, Argonne National Laboratory & ODU

David Keyes, Old Dominion University, LLNL & ICASE

Barry Smith, Argonne National Laboratory

First MIT Conference Jun 14, 2001

Organization of the Presentation
• Performance Issues

• Background of PETSc-FUN3D

• Optimizing for good memory performance

• Bottlenecks to parallel scalability

• Adapting to the hybrid (MPI/OpenMP) programming
model

• Conclusions and future work

First MIT Conference Jun 14, 2001

Factoring out the Parallel Performance
• Per-processor Performance

¾ Needs attention to the memory hierarchy

• Implementation Scalability
¾ Problem constrained scalability

¾ Memory constrained scalability

• Algorithmic Scalability
¾ Degrades as the number of processors increase

First MIT Conference Jun 14, 2001

Three Fundamental Limiting Factors to
Peak Performance: Vertical Hierarchy

• Memory Bandwidth
¾ Processor does not get data at the rate it requires

• Instruction Issue Rate
¾ If the loops are load/store bound, we will not be able to

do a floating point operation in every cycle even if the
operands are available in primary cache

¾ Several constraints (like primary cache latency, latency
of floating point units etc.) are to be observed while
coming up with an optimal schedule

• Fraction of Floating Point Operations
¾ Every instruction is not floating point instruction

First MIT Conference Jun 14, 2001

Memory Performance - A Limitation
• Memory performance improvement rate (7% per year) is far

behind the CPU performance growth (about 55% per year)

• The performance of many scientific computing codes is limited
by the available memory bandwidth

• In shared memory programming, when the processors on a node
compete for the memory bandwidth, there is added motivation to
reduce the number of memory transactions (necessary or
artificial).

• Memory performance models can be very helpful in
understanding the observed performance of a code

First MIT Conference Jun 14, 2001

Primary PDE Solution Kernels
• Vertex-based loops

¾ state vector and auxiliary vector updates

• Edge-based “stencil op” loops

¾ residual evaluation

¾ approximate Jacobian evaluation

¾ Jacobian-vector product (often replaced with matrix-free form,
involving residual evaluation)

• Sparse, narrow-band recurrences

¾ approximate factorization and back substitution

• Vector inner products and norms

¾ orthogonalization/conjugation

¾ convergence progress and stability checks

First MIT Conference Jun 14, 2001

Features of PETSc-FUN3D
• Based on “legacy” (but contemporary) CFD application

with significant F77 code reuse
• Portable, message-passing library-based parallelization, run

on desktop Pentium boxes through Tflop/s ASCI platforms
• Simple multithreaded extension (for SMP Clusters)
• Sparse, unstructured data, implying memory indirection

with only modest reuse
• Wide applicability to other implicitly discretized multiple-

scale PDE workloads - of interagency, interdisciplinary
interest

• Extensive profiling has led to follow-on algorithmic
research

First MIT Conference Jun 14, 2001

Enhancing Locality

• Choose data layouts that enhance locality at every level of memory
hierarchy

• Storage/use patterns should follow memory hierarchy
¾ Blocks for Registers

¨ block storage format for multicomponent systems – cuts the number of loads

¾ Interlaced Data Structures for Cache
¨ Choose

u1,v1,w1,p1,u2,v2,w2,p2,…

in place of

u1,u2,…,v1,v2,…,w1,w2,…,p1,p2,…

¨ Cuts down TLB and data cache misses

¾ Subdomains for Distributed Memory
¨ “Chunky” domain decomposition for optimal surface-to-volume (communication-to-

computation) ratio

First MIT Conference Jun 14, 2001

Data Layouts - Reorderings
• Edge Reordering

¾ sort the nodes at either ends of the edges

¾ effectively transforms an edge based loop into a node based loop

¾ enhances temporal locality

• Node Reordering
¾ Bandwidth reducing orderings will reduce the TLB and cache

misses by referring to data items that are close in memory.

¾ Our experience is with RCM and Sloan

First MIT Conference Jun 14, 2001

TLB Misses:
Measured Values on Origin

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

Base NOER Interlacing NOER Blocking NOER
Base Interlacing Blocking

Log scale!

First MIT Conference Jun 14, 2001

Secondary Cache Misses:
Measured Values on Origin

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

Base NOER Interlacing NOER Blocking NOER
Base Interlacing Blocking

First MIT Conference Jun 14, 2001

MPI: Parallel Performance on ASCI Red
ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices

(about 11 million unknowns) on up to 3072 ASCI Red Nodes (each with
dual Pentium Pro 333 MHz processors)

ImplementationAlgorithmicOverall

0.53

0.61

0.70

0.80

1.00

Parallel Efficiency

0.820.6512.81159343072

0.890.699.78208322048

5.63

3.20

1.00

Speedup

0.940.8563826512

0.930.76362291024

1.001.002,03922128

Time in

seconds
IterNodes

First MIT Conference Jun 14, 2001

MPI: Scalability Bottlenecks on ASCI Red

4.614.2101453072

5.711.781132048

6

5

3

Ghost

Point

Scatters

6.07.173512

7.59.41031024

6.93.645128

Application

Level Effective

Bandwidth per

Node (MB/s)

Total Data

Sent per

Iteration

(GB)

Implicit

Synchro-

nizations

Global
Reduc-

tions

Scatter ScalabilityPercentage Times for

Nodes

First MIT Conference Jun 14, 2001

Motivation for Hybrid Model
• Given

¾ a scalable MPI based code

• Goal
¾ use hybrid model to achieve better performance than MPI alone

• Methodology:
¾ assign one subdomain to one MPI process

¾ use OpenMP with in a subdomain that gets mapped to a node (with 2 or
more processors)

• Advantage
¾ take advantage of shared memory programming within a subdomain

¾ results in bigger subdomains as more than one thread can work on a
subdomain as compared to pure MPI case

First MIT Conference Jun 14, 2001

Our View of the Hybrid Model
• MPI Extreme

¾ the user manages the memory updates

• OpenMP Extreme
¾ the system manages the memory updates

• Hybrid MPI/OpenMP
¾ Some memory updates are managed by the user and the

rest by the system

First MIT Conference Jun 14, 2001

Performance Issues for OpenMP
• Overhead of thread management

• Redundant storage and work

• Sequential reduction phase, which tend to be memory
bandwidth bound

• Simplicity goes away when user takes care of memory
updates (similar to MPI model)

First MIT Conference Jun 14, 2001

Hybrid Model: Implementation Issues

• Data Distribution
¾ False sharing

¾ Cache locality

• Work Division
¾ Compiler or User

¾ Static or dynamic

• Updates of the Shared Data
¾ Private data but initialization and reductions are memory

bandwidth bound

¾ Shared data but updates need to be synchronized

First MIT Conference Jun 14, 2001

Hybrid Model: Three Implementation Strategies
• Edge Coloring

¾ Poor cache locality
¾ Compiler divides the work
¾ Updates are independent

• Edge Reordering
¾ Excellent cache locality
¾ Compiler divides work
¾ Updates are a problem

• Manual Work Division
¾ Each MPI process calls MeTiS to further subdivide the work among

threads
¾ Boundary data is replicated for each thread
¾ “Owner computes” rule is applied for every thread

First MIT Conference Jun 14, 2001

Flux Evaluation in PETSc-FUN3D

First MIT Conference Jun 14, 2001

Edge Coloring

1 2
3 4
7 8
2 6
1 5
2 3
6 8
4 5
3 6

1 2
2 6
3 4
1 5
2 3
4 5
7 8
6 8
3 6

First MIT Conference Jun 14, 2001

Edge Reordering

1 2
1 5
2 6
2 3
3 4
3 6
4 5
6 8
7 8

1 2
2 6
3 4
1 5
2 3
4 5
7 8
6 8
3 6

First MIT Conference Jun 14, 2001

MPI/OpenMP in PETSc-FUN3D
• Only in the flux evaluation phase, as it is not memory bandwidth bound

• Gives the best execution time as the number of nodes increases
because the subdomains are chunkier as compared to pure MPI case

63

109

293

MeTiS

Divided

1161301361831024

626391933072

314423332510256

Edge
Reordering

Edge
Coloring

21

MPI/OpenMP

2 Threads Per Node

MPI Processes

Per Node
Nodes

First MIT Conference Jun 14, 2001

Conclusions

• PDE codes can run well on distributed hierarchical memory
machines, with attention to partitioning, vertex ordering,
component ordering, blocking, and tuning

• Parallel scalability is not hard, but attaining high per-
processor performance for sparse problems gets more
challenging with each machine generation

• Hybrid MPI/OpenMP achieves good overall performance
but should be used only in the phases that are not memory
bandwidth limited
¾ Results in bigger subdomains

¨ Faster convergence rate
¨ Less network transactions

First MIT Conference Jun 14, 2001

Acknowledgments
• Accelerated Strategic Computing Initiative, DOE

¾ access to ASCI Red and Blue machines

• National Energy Research Scientific Computing Center
(NERSC), DOE
¾ access to large T3E

• SGI-Cray
¾ access to large T3E

• National Science Foundation
¾ research sponsorship under Multidisciplinary Computing

Challenges Program

• U. S. Department of Education
¾ graduate fellowship support for D. Kaushik

First MIT Conference Jun 14, 2001

Related URLs
• Follow-up on this talk

http://www.mcs.anl.gov/petsc-fun3d

• PETSc
http://www.mcs.anl.gov/petsc

• FUN3D
http://fmad-www.larc.nasa.gov/~wanderso/Fun

• ASCI platforms
http://www.llnl.gov/asci/platforms

• International Conferences on Domain Decomposition
Methods

http://www.ddm.org

• International Conferences on Parallel CFD
http://www.parcfd.org

