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Organization of the Presentation
• Performance Issues

• Background of PETSc-FUN3D

• Optimizing for good memory performance

• Bottlenecks to parallel scalability

• Adapting to the hybrid (MPI/OpenMP) programming 
model

• Conclusions and future work 
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Factoring out the Parallel Performance
• Per-processor Performance

¾ Needs attention to the memory hierarchy

• Implementation Scalability
¾ Problem constrained scalability

¾ Memory constrained scalability

• Algorithmic Scalability
¾ Degrades as the number of processors increase
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Three Fundamental Limiting Factors to 
Peak Performance: Vertical Hierarchy

• Memory Bandwidth
¾ Processor does not get data at the rate it requires

• Instruction Issue Rate
¾ If the loops are load/store bound, we will not be able to 

do a floating point operation in every cycle even if the 
operands are available in primary cache

¾ Several constraints (like primary cache latency, latency 
of floating point units etc.) are to be observed while 
coming up with an optimal schedule

• Fraction of Floating Point Operations
¾ Every instruction is not floating point instruction
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Memory Performance - A Limitation
• Memory performance improvement rate (7% per year) is far 

behind the CPU performance growth (about 55% per year)

• The performance of many scientific computing codes is limited 
by the available memory bandwidth

• In shared memory programming, when the processors on a node 
compete for the memory bandwidth, there is added motivation to 
reduce the number of memory transactions (necessary or 
artificial).

• Memory performance models can be very helpful in 
understanding the observed performance of a code
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Primary PDE Solution Kernels
• Vertex-based loops

¾ state vector and auxiliary vector updates

• Edge-based “stencil op” loops

¾ residual evaluation

¾ approximate Jacobian evaluation

¾ Jacobian-vector product (often replaced with matrix-free form, 
involving residual evaluation)

• Sparse, narrow-band recurrences

¾ approximate factorization and back substitution

• Vector inner products and norms

¾ orthogonalization/conjugation

¾ convergence progress and stability checks
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Features of PETSc-FUN3D
• Based on “legacy” (but contemporary) CFD application 

with significant F77 code reuse
• Portable, message-passing library-based parallelization, run 

on desktop Pentium boxes through Tflop/s ASCI platforms 
• Simple multithreaded extension (for SMP Clusters)
• Sparse, unstructured data, implying memory indirection 

with only modest reuse
• Wide applicability to other implicitly discretized multiple-

scale PDE workloads - of interagency, interdisciplinary 
interest

• Extensive profiling has led to follow-on algorithmic 
research



First MIT Conference Jun 14, 2001

Enhancing Locality

• Choose data layouts that enhance locality at every level of memory 
hierarchy

• Storage/use patterns should follow memory hierarchy
¾ Blocks for Registers

¨ block storage  format for multicomponent systems – cuts the number of loads

¾ Interlaced Data Structures for Cache
¨ Choose

u1,v1,w1,p1,u2,v2,w2,p2,…

in place of 

u1,u2,…,v1,v2,…,w1,w2,…,p1,p2,…

¨ Cuts down TLB and data cache misses

¾ Subdomains for Distributed Memory
¨ “Chunky” domain decomposition for optimal surface-to-volume (communication-to-

computation) ratio
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Data Layouts - Reorderings
• Edge Reordering

¾ sort the nodes at either ends of the edges

¾ effectively transforms an edge based loop into a node based loop

¾ enhances temporal locality

• Node Reordering
¾ Bandwidth reducing orderings will reduce the TLB and cache 

misses by referring to data items that are close in memory.

¾ Our experience is with RCM and Sloan
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TLB Misses: 
Measured Values on Origin
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Secondary Cache Misses:
Measured Values on Origin
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MPI: Parallel Performance on ASCI Red
ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices 

(about 11 million unknowns) on up to 3072 ASCI Red Nodes (each with 
dual Pentium Pro 333 MHz processors)

ImplementationAlgorithmicOverall

0.53

0.61

0.70

0.80

1.00

Parallel Efficiency

0.820.6512.81159343072

0.890.699.78208322048

5.63

3.20

1.00

Speedup

0.940.8563826512

0.930.76362291024

1.001.002,03922128

Time in

seconds
IterNodes



First MIT Conference Jun 14, 2001

MPI: Scalability Bottlenecks on ASCI Red
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Motivation for Hybrid Model
• Given

¾ a scalable MPI based code

• Goal
¾ use hybrid model to achieve better performance than MPI alone

• Methodology: 
¾ assign one subdomain to one MPI process

¾ use OpenMP with in a subdomain that gets mapped to a node (with 2 or 
more processors) 

• Advantage
¾ take advantage of shared memory programming within a subdomain

¾ results in bigger subdomains as more than one thread can work on a 
subdomain as compared to pure MPI case
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Our View of the Hybrid Model
• MPI Extreme

¾ the user manages the memory updates

• OpenMP Extreme
¾ the system manages the memory updates

• Hybrid MPI/OpenMP
¾ Some memory updates are managed by the user and the 

rest by the system
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Performance Issues for OpenMP
• Overhead of thread management

• Redundant storage and work

• Sequential reduction phase, which tend to be memory 
bandwidth bound

• Simplicity goes away when user takes care of memory 
updates (similar to MPI model)
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Hybrid Model: Implementation Issues

• Data Distribution
¾ False sharing

¾ Cache locality

• Work Division
¾ Compiler or User

¾ Static or dynamic

• Updates of the Shared Data
¾ Private data but initialization and reductions are memory 

bandwidth bound

¾ Shared data but updates need to be synchronized
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Hybrid Model: Three Implementation Strategies
• Edge Coloring

¾ Poor cache locality
¾ Compiler divides the work
¾ Updates are independent

• Edge Reordering
¾ Excellent cache locality
¾ Compiler divides work
¾ Updates are a problem

• Manual Work Division
¾ Each MPI process calls MeTiS to further subdivide the work among 

threads
¾ Boundary data is replicated for each thread
¾ “Owner computes” rule is applied for every thread
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Flux Evaluation in PETSc-FUN3D
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Edge Coloring
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Edge Reordering
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MPI/OpenMP in PETSc-FUN3D
• Only in the flux evaluation phase, as it is not memory bandwidth bound

• Gives the best execution time as the number of nodes  increases 
because the subdomains are chunkier as compared to pure MPI case
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Conclusions

• PDE codes can run well on distributed hierarchical memory 
machines, with attention to partitioning, vertex ordering, 
component ordering, blocking, and tuning

• Parallel scalability is not hard, but attaining high per-
processor performance for sparse problems gets more 
challenging with each machine generation

• Hybrid MPI/OpenMP achieves good overall performance 
but should be used only in the phases that are not memory 
bandwidth limited
¾ Results in bigger subdomains

¨ Faster convergence rate
¨ Less network transactions
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Related URLs
• Follow-up on this talk

http://www.mcs.anl.gov/petsc-fun3d

• PETSc
http://www.mcs.anl.gov/petsc

• FUN3D
http://fmad-www.larc.nasa.gov/~wanderso/Fun

• ASCI platforms
http://www.llnl.gov/asci/platforms

• International Conferences on Domain Decomposition 
Methods

http://www.ddm.org

• International Conferences on Parallel CFD
http://www.parcfd.org


