
Improving the Performance of
Sparse Matrix-vector

Multiplication by Blocking

William D. Gropp [1]

Dinesh K. Kaushik [1,2]

David E. Keyes [2,3,4]

Barry F. Smith [1]

[1] Argonne National Laboratory
[2] Old Dominion University

[3] Lawrence Livermore National Laboratory
[4] ICASE, NASA Langley Research Center

Outline

• Performance analysis of sparse
matrix-vector product for 1 to N
independent vectors

• Complexity models (flops, loads,
stores, “stream loads and stores”)

• Refinements and future directions
• Summary of architectural

“headroom” for multivectors

Background

• Historic memory performance improvement rate (7% per
year) is far behind the CPU performance growth (about
55% per year)

• Sequential performance on many machines is a low
percentage of “peak”

• Complexity analysis of algorithms based on floating point
operations alone is deceptive

• A proper complexity model for the sparse matrix-vector
product illustrates the issues

♦ Same data access considerations as stencil-op kernel in
explicit methods for PDEs

♦ Same as Krylov kernel and similar to preconditioner
application kernel in implicit methods for PDEs

Three Potential Rate Limiters
on Arithmetic Performance

• Memory Bandwidth
♦ Processor does not get data at the rate it requires

• Instruction Issue Rate
♦ If the loops are load/store bound, cannot perform a floating point

operation in every cycle even if the operands are available in
primary cache

♦ Several constraints (like primary cache latency, latency of floating
point units etc.) must be observed in deriving an optimal
schedule

• Fraction of Floating Point Operations
♦ Not every instruction is a floating point instruction

• Each of these forces counting something
besides just floating point operations

Implications of Bandwidth Limitations
in Shared Memory Systems

• The processors on a node compete for
the available memory bandwidth

• The computational phases that are
memory bandwidth limited will not scale

♦ may even run slower because of the extra
synchronizations

Stream Benchmark on ASCI Red
MB/s for the Triad Operation

1521571E07
1411451E06
1441401E05
2381375E04
12966661E04

2 Threads1 ThreadVector Size

Larger vectors in last three rows do not fit into
cache and are bandwidth-limited

Sequential Performance of
PETSc-FUN3D

0

100

200

300

400

500

600

700

800

900

SP Origin T3E

Peak Mflops/s Stream Triad Mflops/s Observed Mflops/s

Note the poor prediction by “Peak Mflops/s” and better prediction based on “Stream”

Analysis of a Simple Kernel:
Sparse Matrix Product

• Sparse matrix vector product is
important part of many iterative
solvers

• Simple analysis predicts much
better performance bounds (based
on the three architectural limits)
than the “marketing” peak of a
processor

Matrix-vector Multiplication for a
Single Vector

do i=1, n
fetch ia(i+1)
sum = 0
! loop over the non-zeros of the row
do j = ia(i), ia(i + 1)-1 {

fetch ja(j), a(j), x (ja(j))
sum = sum + a(j) * x(ja(j))

enddo
Store sum into y(i)

enddo

Matrix Vector Multiplication for N
Independent Vectors

do i = 1, n
fetch ia(i+1)
! loop over the non-zeros of the row
do j = ia(i), ia(i + 1) - 1

fetch ja(j), a(j), x1(ja(j)), ..…xN(ja(j))
do N fmadd (floating multiply add)

enddo
Store y1(i) ..…yN(i)

enddo

This version performs A {x1, …, xN}

Performance Issues for
Sparse Matrix Vector Product

• Low available memory bandwidth
combined with little data reuse

• High ratio of loads/stores to
instructions/floating-point ops

• Stalling of multiple load/store units
on the same cache line

Multivectors: Increasing
Matrix Cache-line Reuse

• Multiplying more than one vector with the same matrix reuses
the matrix-entry cache lines

• With enhanced matrix temporal locality, vector spatial locality
can suffer, however

♦ Possibility of more vector-entry cache line conflicts
♦ Possibility of output-vector cache line conflicts analogous to false

sharing multithreaded applications
♦ Allocation of the vectors in memory – interlaced or non-interlaced?

• TLB misses (effect is to punish applications that refer to many different
memory pages, even if total cache usage isn’t large)

♦ The lack of a universal, detailed model of performance makes
detailed performance prediction difficult and case-by-case

Estimating the Memory
Bandwidth Limitation

Assumptions

• Perfect Cache (only compulsory misses; no overhead)
• No memory latency
• Unlimited number of loads and stores per cycle

Data Volume (m*n matrix in AIJ Format)

m*sizeof(int) + N*(m+n)*sizeof(double)
(ia, N input (size n) and output (size m) vectors)

+ nz* (sizeof(int) + sizeof(double))
(ja, and a arrays)

= 4*(m+nz) + 8*(N*(m+n)+ nz)

• Number of Floating-Point Multiply Add (fmadd) Ops =
N*nz

• For square matrices (m=n) in AIJ format,

(Since nz >> n, Bytes transferred / fmadd ~12/N)

• Similarly, for Block AIJ (BAIJ) format (blocksize b)

Estimating the Memory
Bandwidth Limitation II

N

nz
n

*
N

124

16 ed/fmadd transferrBytes +





 +=







 ++






 +=

NbN

nz
n

bN
8

*
4

*
*
4

16 ed/fmadd transferrBytes

N = # vectors, n = # rows, nz = # nonzeros in A, double=8 bytes, int = 4 bytes

Computing an Estimate of
Maximum Possible Performance

• Bytes per floating multiply-add combined with
memory bandwidth (bytes/second) give a
bound on rate of execution of multiply-adds

• Quoted (vendor-supplied) memory bandwidth
numbers are often useless

♦ Details of memory system hardware strongly affect
performance and can be difficult to uncover

• Fortunately, a simple measurement is often
adequate

Performance Summary on
250 MHz R10000

• Matrix size, n = 90,708; number of nonzero entries, nz
= 5,047,120 (from computational aerodynamics, b=4)

• Stream performance is 358 MB/sec (for triad vector
operation) http://www.cs.virginia.edu/stream

• Number of Vectors, N = 1, and 4

Bandwidth MFlops Format Number of
Vectors

Bytes /
fmadd Required Achieved Ideal Achieved

AIJ 1 12.36 3090 276 58 45
AIJ 4 3.31 827 221 216 120

BAIJ 1 9.31 2327 84 55
BAIJ 4 2.54 635 229 305 175

 • Ratio of 2.7 for AIJ and 3.2 for BAIJ in going from 1 to 4

Prefetching - Fully Use the
Available Memory Bandwidth

• Many programs are not able to use the
available memory bandwidth for various
reasons

• Ideally a memory operation should be
scheduled in each cycle since each cycle
is a lost opportunity

• Compilers do not do enough prefetching
• Implementing and estimating the right

amount of prefetching is hard

Estimating the Operation Issue
Limitation, I

do i=1, m
jrow = ia(i+1) // 1Of, AT, Ld
ncol = ia(i+1) -ia(i) // 1 Iop
Initialize, sum1 …..sumN // N Ld
do j=1,ncol // 1 Ld
fetch ja(jrow), a(jrow), x1(ja(jrow)), ..…xN(ja(jrow))

// 1 Of, N+2 AT,
N+2 Ld

do N fmadd (floating multiply add) // 2N Fop
enddo // 1 Iop, 1 Br
Store sum1…..sumN in y1(i) ..…yN(i) // 1 Of, N AT, and St

enddo // 1 Iop, 1 Br

AT:address transln; Br: branch; Iop: integer op; Fop: floating point op;
Of: offset calculation; Ld: load; St: store

Estimating the Operation Issue
Limitation, II

• Assumptions:
♦ Data items are in cache
♦ Each operation takes only one cycle to complete but

multiple operations can graduate in one cycle
• If only one load or store can be issued in one cycle (as is the

case on R10000 and many other processors), the best we can
hope for is

• Other restrictions (like primary cache latency, latency of
floating point units etc.) need to be taken into account while
creating the best schedule

MFlops/sPeak *
Stores and Loads ofNumber

nsinstructiopoint floating ofNumber

Estimating the Fraction of
Floating Point Operations

• Estimated number of floating point
operations out of the total instructions:

• For N=1, If = 0.18
• For N = 4, If = 0.34, this is one-third of

“peak” performance (for the aero example)

9)N*(4*nz8)N*(3*m
nz*N*2

)(I point work floating onspent Fraction

9)N*(4*nz8)N*(3*m)(I completed nsinstructio ofnumber Total

f

t

+++
=

+++=

Realistic Measures of Peak Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0

100
200

300
400

500
600

700
800

900

SP Origin T3E Pentium Ultra II

Theoretical Peak Oper. Issue Peak
Mem BW Peak Observed

Experimental Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz =
5,047,120

0

50

100

150

200

250

300

SP Origin T3E Pentium Ultra II

Oper. Issue Peak Mem BW Peak ObservedPeak Perform
ance

Implications

• Memory traffic is rate-limiting in sparse
matrices

♦ Reuse data items
♦ Reuse items in cache
♦ Avoid jumping far in memory (TLB misses)

• Reducing the number of non-floating-
point instructions is also important

♦ Reuse items in registers (reduce loads,
address computation)

Forming an Accurate
Complexity Model

• If the problem does not fit in cache:
♦ Loads/Stores can dominate
♦ Compute memory bound assuming “perfect” cache for

smaller data items
♦ Use “Stream” numbers for memory bandwidth

• If individual domains fit in cache:
♦ Still must consider cost of loading domains into cache
♦ Count total operations, not just flops

• L1 cache usually small
• L2, L3 cache take more cycles to access (weight operations

accordingly)
♦ Time estimate is based on worst of the limits imposed by

number of flops, memory references, and total instruction
count

♦ Superlinear speedup is possible by staying within a faster
memory level

Uniprocessor Memory
Performance

• AlphaServer 8200 read latencies (3.33ns clock)

LatencyMemory
Level ns cycles

Bandwidth
GB/sec

Cache 6.7 2 4.8
L2 Cache 20 6 4.8
L3 Cache 26 8 0.96
Main 253 76 1.2
DRAM 60 18 .03-.1

• Note that a[i] = b[i] * c[i] requires 7.2
GB/sec to keep processor fully busy

Parallel Processor Memory
Performance

• Average read latency
CPUs AlphaServer Origin2000

MHz 300 195
ns cycles ns cycles

1 176 53
2 190 57 313 61
4 220 66 405 79
8 299 117 528 103

16 641 125
32 710 138
64 796 155
128 903 176

… and worse (cluster and cluster-like
scalable systems)

Conclusions

• Using multivectors can improve the performance of
sparse matrix-vector product significantly

• “Algorithmic headroom” is available for modest blocking
• Simple models predict the performance of sparse

matrix-vector operations on a variety of platforms,
including the effects of memory bandwidth, and
instruction issue rates

♦ achievable performance is a small fraction of stated peak
for sparse matrix-vector kernels, independent of code
quality

♦ compiler improvements and intelligent prefetching can
help but the problem is fundamentally an architecture-
algorithm mismatch and needs an algorithmic solution

Future Directions

• Design better data structures and
implementation strategies for sparse matrix
vector and related operations

• Integrate understanding of the performance
issues with developments in block-structured
algorithms to produce linear and nonlinear
solvers that achieve a higher fraction of peak
performance on a per-node basis

• Look at important special cases in hierarchical
algorithms where performance modeling
suggests alternative data structures and
algorithmic directions

Relevant URLs

• PETSc-FUN3D Project at Argonne
http://www.mcs.anl.gov/petsc-fun3d

• PETSc
http://www.mcs.anl.gov/petsc

• ODU NSF and ASCI projects
http://www.math.odu.edu/~keyes/nsf
http://www.math.odu.edu/~keyes/asci

