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PETSc Philosophy

• Writing hand-parallelized application codes from scratch is 
extremely difficult and time consuming.

• Scalable parallelizing compilers for real application codes 
are very far in the future.

• We can ease the development of parallel application codes 
by developing general-purpose, parallel numerical PDE 
libraries.

• Caveats
– Developing parallel, non-trivial PDE solvers that deliver high 

performance is still difficult, and requires months of concentrated 
effort.

– PETSc is a toolkit that can reduce the development time, but it is 
not a black-box PDE solver nor a silver bullet.
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Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK
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The PETSc Programming Model
• Goals

– Portable, runs everywhere
– Performance
– Scalable parallelism

• Approach
– Distributed memory, “shared-nothing”

• Requires only a compiler (single node or processor)
• Access to data on remote machines through MPI

– Can still exploit “compiler discovered” parallelism on each node
(e.g., OpenMP)

– Hide within parallel objects the details of the communication
– User orchestrates communication at a higher abstract level than 

message passing
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A Freely Available and Supported 
Research Code

• Available via http://www.mcs.anl.gov/petsc
• Usable in C, C++, and Fortran77/90 (with minor 

limitations in Fortran 77/90 due to their syntax)
• Users manual
• Hyperlinked manual pages for all routines 
• Many tutorial-style examples
• Support via email: petsc-maint@mcs.anl.gov
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True Portability

• Tightly coupled systems
– Cray T3D/T3E
– SGI/Origin
– IBM SP
– Convex Exemplar

• Loosely coupled systems, e.g., networks of workstations
– Sun OS, Solaris
– IBM AIX
– DEC Alpha
– HP
– Linux

– Freebsd
– Windows 98/2000
– Mac OS X
– BeOS
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Collectivity

• MPI communicators (MPI_Comm) specify collectivity 
(processors involved in a computation)

• All PETSc creation routines for solver and data objects are 
collective with respect to a communicator, e.g., 
VecCreate(MPI_Comm comm, int m, int M, Vec *x)

• Some operations are collective, while others are not, e.g., 
– collective: VecNorm( )
– not collective: VecGetLocalSize()

• If a sequence of collective routines is used, they must be 
called in the same order on each processor
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Overview
• How to specify the mathematics of the problem

– Data objects
• vectors, matrices

• How to solve the problem
– Solvers

• Nonlinear solvers
• Design

– Extensibility
• Parallel computing complications

– Parallel data layout/ Ghost values
• Scatter routines, index sets

• Other Issues
– Portability
– Performance

• Fluid application using PETSc
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Vectors

• Fundamental objects for storing field 
solutions, right-hand sides, etc.

• VecCreateMPI(...,Vec *)
– MPI_Comm - processors that share the 

vector
– number of elements local to this processor
– total number of elements

• Each process locally owns a sub-
vector of contiguously numbered 
global indices

proc 3

proc 2

proc 0

proc 4

proc 1
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Sparse Matrices

• Fundamental objects for storing 
linear operators (e.g., Jacobians)

• MatCreateMPIAIJ(…,Mat *)
– MPI_Comm - processors that share the 

matrix
– number of local rows and columns
– number of global rows and columns
– optional storage pre-allocation 

information

• Each process locally owns a 
sub-matrix of contiguously 
numbered global rows.

proc 3
proc 2
proc 1

proc 4

proc 0
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Parallel Matrix and Vector Assembly

• Processes may generate any entries in vectors and matrices
• Entries need not be generated by the process on which they 

ultimately will be stored
• PETSc automatically moves data during assembly if necessary
• Vector example:

• VecSetValues(Vec,…)
– number of entries to insert/add
– indices of entries
– values to add
– mode: 

[INSERT_VALUES,ADD_VALUES]
• VecAssemblyBegin(Vec)
• VecAssemblyEnd(Vec)

Agregation of Communication
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Solvers:  Usage Concepts

• Linear (SLES)
• Nonlinear (SNES)
• Timestepping (TS)

• Context variables
• Solver options
• Callback routines
• Customization/Extensibility

Solver Classes Usage Concepts
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Basic Nonlinear Solver Code (Fortran)

SNES   snes
Mat      J
Vec      x, F
int        n, its

...
call MatCreate(MPI_COMM_WORLD,n,n,J,ierr)
call VecCreate(MPI_COMM_WORLD,n,x,ierr)
call VecDuplicate(x,F,ierr)

call SNESCreate(MPI_COMM_WORLD,SNES_NONLINEAR_EQUATIONS,snes,ier
call SNESSetFunction(snes,F,EvaluateFunction,PETSC_NULL,ierr)
call SNESSetJacobian(snes,J,EvaluateJacobian,PETSC_NULL,ierr)
call SNESSetFromOptions(snes,ierr)
call SNESSolve(snes,x,its,ierr)

Context Variable

Set Solver Options

Callback Functions
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Setting Solver Options

• Standard function call interface: 
SNESSetType(SNES snes,SNESType 
type)

• Using options database from command 
line 
-snes_type [ ls, ts, .. ]
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Design and Extensibility

• Illustrate using Preconditioner object PC

PCCreate(….. &pc)
PCSetType(pc, PC_TYPE)

PC_TYPE (defaults)
• Jacobi, Bjacobi,SOR,ILU,ICC,LU,ASM
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PCApply() Implementation

PCApply(PC pc,Vec x,Vec y)
{

(*pc->ops->apply)(pc,x,y);
}
pc->ops->apply
• PCApply_Jacobi()
• PCApply_BJacobi()
• PCApply_ILU()
• PCApply_ASM()
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PETSc Objects

PC pc;

Object Reference Library Code

pcapply = PCApply_BJacobi()

Type = BJacobi
Data

Function Pointers

Mat = ptr to mat

pcdestroy = PCDestroy_BJacobi()
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Extensibility of PC

PCRegister(“newtype",0,"PCCreate_NewType",PCCreate_NewType);

PCCreate_NewType(PC pc)
{

……….
pc->ops->setup               =  PCSetUp_NewType;
pc->ops->apply              =  PCApply_NewType;
pc->ops->destroy            =  PCDestroy_NewType;

}
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Extensibility Issues

• Most PETSc objects are designed to allow one to 
“drop in” a new implementation with a new set of 
data structures (similar to implementing a new 
class in C++).

• Heavily commented example codes include
– Krylov methods: petsc/src/sles/ksp/impls/cg
– preconditioners: petsc/src/sles/pc/impls/jacobi
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Data Layout/Ghost Values 

Local node Ghost node
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VecScatters / Index Sets
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VecScatterCreate(MPI_Vec,ISFrom,SeqVec,ISTo,&scatter)
VecScatterBegin(), VecScatterEnd()

ISFrom ISTo

ISFrom ISTo
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Communication and Physical Discretization

Communication

Data Structure
Creation

Ghost Point
Data Structures

Ghost Point
Updates

Local
Numerical

Computation
Geometric

Data 

DA
AO

DACreate(  ) DAGlobalToLocal(  )
Loops over
I,J,K
indices

stencil
[implicit]

VecScatter
AOVecScatterCreate(  ) VecScatter(  ) Loops over

entities

elements
edges

vertices
unstructured meshes

structured meshes 1

2
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Portability Issues

• Use makefiles and environment variable 
(PETS_ARCH) to manage multiple architectures. 

• Machine specific functionality.
• Run test-suite on various architectures every night.
• Provide support to avoid machine specific 

information in the user’s code and makefiles.
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Performance Issues

• Flexible design to allow experimentation.
• Do certain optimizations after analyzing performance.
• Use –log_summary as a tool, but always use API, tuned for 

high performance.
• Modular design enables multiple implementations of the 

same component (AIJ,BAIJ etc..)
• Machine specific optimizations possible (using fortran 

kernels, for loops etc..)
• Create once and reuse – Scatters, factorizations etc..
• Pay attention to data layout/cache issues.
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Performance through Multiple Implementations 
(separate code for each block size)
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• 3D compressible Euler code
• Block size 5
• IBM Power2
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Other Issues

• Object header, creation, composition, dynamic methods etc.
• Extensive and consistent error handling.
• Profiling interface – application information, performance.
• Fortran interface/Fortran 90 support.
• Viewers – to debug/visualize PETSc objects.
• Interoperability with BlockSolve, PVode, Overture.
• Alice memory snooper(AMS), Toolkit for Advanced 

Optimization(TAO).
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Caveats Revisited

• Developing parallel, non-trivial PDE solvers that 
deliver high performance is still difficult, and 
requires months (or even years) of concentrated 
effort.

• PETSc is a toolkit that can ease these difficulties 
and reduce the development time, but it is not a 
black-box PDE solver nor a silver bullet.

• Users are invited to interact directly with us 
regarding correctness or performance issues by 
writing to petsc-maint@mcs.anl.gov.


