
PETSc Overview

Satish Balay, Bill Gropp, Dinesh Kaushik, Lois C. McInnes,
Barry Smith

Mathematics and Computer Science Division
Argonne National Laboratory

Design and Implementation strategy for
Extensibility, Portability and Performance

(The Grand Tour)

2

PETSc Philosophy

• Writing hand-parallelized application codes from scratch is
extremely difficult and time consuming.

• Scalable parallelizing compilers for real application codes
are very far in the future.

• We can ease the development of parallel application codes
by developing general-purpose, parallel numerical PDE
libraries.

• Caveats
– Developing parallel, non-trivial PDE solvers that deliver high

performance is still difficult, and requires months of concentrated
effort.

– PETSc is a toolkit that can reduce the development time, but it is
not a black-box PDE solver nor a silver bullet.

3

Component Interactions for
Numerical PDEs

Grids

Steering

Optimization

PDE
Discretization

Algebraic
Solvers

Visualization

Derivative
Computation

PETSc
emphasis

4

Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc PDE Application Codes

Matrices, Vectors, Indices Grid
Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers

ODE Integrators Visualization

Interface

PETSc Layering

5

Compressed
Sparse Row

(AIJ)

Blocked Compressed
Sparse Row

(BAIJ)

Block
Diagonal
(BDIAG)

Dense Other

Indices Block Indices Stride Other

Index SetsVectors

Line Search Trust Region

Newton-based Methods
Other

Nonlinear Solvers

Additive
Schwartz

Block
Jacobi Jacobi ILU ICC LU

(Sequential only) Others

Preconditioners

Euler Backward
Euler

Pseudo Time
Stepping Other

Time Steppers

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Other

Krylov Subspace Methods

Matrices

Sample PETSc Numerical
Components

6
PETSc codeUser code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Solve
F(u) = 0

Flow of Control for a Non-Linear
Solve

7

The PETSc Programming Model
• Goals

– Portable, runs everywhere
– Performance
– Scalable parallelism

• Approach
– Distributed memory, “shared-nothing”

• Requires only a compiler (single node or processor)
• Access to data on remote machines through MPI

– Can still exploit “compiler discovered” parallelism on each node
(e.g., OpenMP)

– Hide within parallel objects the details of the communication
– User orchestrates communication at a higher abstract level than

message passing

8

A Freely Available and Supported
Research Code

• Available via http://www.mcs.anl.gov/petsc
• Usable in C, C++, and Fortran77/90 (with minor

limitations in Fortran 77/90 due to their syntax)
• Users manual
• Hyperlinked manual pages for all routines
• Many tutorial-style examples
• Support via email: petsc-maint@mcs.anl.gov

9

True Portability

• Tightly coupled systems
– Cray T3D/T3E
– SGI/Origin
– IBM SP
– Convex Exemplar

• Loosely coupled systems, e.g., networks of workstations
– Sun OS, Solaris
– IBM AIX
– DEC Alpha
– HP
– Linux

– Freebsd
– Windows 98/2000
– Mac OS X
– BeOS

10

Collectivity

• MPI communicators (MPI_Comm) specify collectivity
(processors involved in a computation)

• All PETSc creation routines for solver and data objects are
collective with respect to a communicator, e.g.,
VecCreate(MPI_Comm comm, int m, int M, Vec *x)

• Some operations are collective, while others are not, e.g.,
– collective: VecNorm()
– not collective: VecGetLocalSize()

• If a sequence of collective routines is used, they must be
called in the same order on each processor

11

Overview
• How to specify the mathematics of the problem

– Data objects
• vectors, matrices

• How to solve the problem
– Solvers

• Nonlinear solvers
• Design

– Extensibility
• Parallel computing complications

– Parallel data layout/ Ghost values
• Scatter routines, index sets

• Other Issues
– Portability
– Performance

• Fluid application using PETSc

12

Vectors

• Fundamental objects for storing field
solutions, right-hand sides, etc.

• VecCreateMPI(...,Vec *)
– MPI_Comm - processors that share the

vector
– number of elements local to this processor
– total number of elements

• Each process locally owns a sub-
vector of contiguously numbered
global indices

proc 3

proc 2

proc 0

proc 4

proc 1

13

Sparse Matrices

• Fundamental objects for storing
linear operators (e.g., Jacobians)

• MatCreateMPIAIJ(…,Mat *)
– MPI_Comm - processors that share the

matrix
– number of local rows and columns
– number of global rows and columns
– optional storage pre-allocation

information

• Each process locally owns a
sub-matrix of contiguously
numbered global rows.

proc 3
proc 2
proc 1

proc 4

proc 0

14

Parallel Matrix and Vector Assembly

• Processes may generate any entries in vectors and matrices
• Entries need not be generated by the process on which they

ultimately will be stored
• PETSc automatically moves data during assembly if necessary
• Vector example:

• VecSetValues(Vec,…)
– number of entries to insert/add
– indices of entries
– values to add
– mode:

[INSERT_VALUES,ADD_VALUES]
• VecAssemblyBegin(Vec)
• VecAssemblyEnd(Vec)

Agregation of Communication

15

Solvers: Usage Concepts

• Linear (SLES)
• Nonlinear (SNES)
• Timestepping (TS)

• Context variables
• Solver options
• Callback routines
• Customization/Extensibility

Solver Classes Usage Concepts

16

Basic Nonlinear Solver Code (Fortran)

SNES snes
Mat J
Vec x, F
int n, its

...
call MatCreate(MPI_COMM_WORLD,n,n,J,ierr)
call VecCreate(MPI_COMM_WORLD,n,x,ierr)
call VecDuplicate(x,F,ierr)

call SNESCreate(MPI_COMM_WORLD,SNES_NONLINEAR_EQUATIONS,snes,ier
call SNESSetFunction(snes,F,EvaluateFunction,PETSC_NULL,ierr)
call SNESSetJacobian(snes,J,EvaluateJacobian,PETSC_NULL,ierr)
call SNESSetFromOptions(snes,ierr)
call SNESSolve(snes,x,its,ierr)

Context Variable

Set Solver Options

Callback Functions

17

Setting Solver Options

• Standard function call interface:
SNESSetType(SNES snes,SNESType
type)

• Using options database from command
line
-snes_type [ls, ts, ..]

18

Design and Extensibility

• Illustrate using Preconditioner object PC

PCCreate(….. &pc)
PCSetType(pc, PC_TYPE)

PC_TYPE (defaults)
• Jacobi, Bjacobi,SOR,ILU,ICC,LU,ASM

19

PCApply() Implementation

PCApply(PC pc,Vec x,Vec y)
{

(*pc->ops->apply)(pc,x,y);
}
pc->ops->apply
• PCApply_Jacobi()
• PCApply_BJacobi()
• PCApply_ILU()
• PCApply_ASM()

20

PETSc Objects

PC pc;

Object Reference Library Code

pcapply = PCApply_BJacobi()

Type = BJacobi
Data

Function Pointers

Mat = ptr to mat

pcdestroy = PCDestroy_BJacobi()

21

Extensibility of PC

PCRegister(“newtype",0,"PCCreate_NewType",PCCreate_NewType);

PCCreate_NewType(PC pc)
{

……….
pc->ops->setup = PCSetUp_NewType;
pc->ops->apply = PCApply_NewType;
pc->ops->destroy = PCDestroy_NewType;

}

22

Extensibility Issues

• Most PETSc objects are designed to allow one to
“drop in” a new implementation with a new set of
data structures (similar to implementing a new
class in C++).

• Heavily commented example codes include
– Krylov methods: petsc/src/sles/ksp/impls/cg
– preconditioners: petsc/src/sles/pc/impls/jacobi

23

Data Layout/Ghost Values

Local node Ghost node

24

VecScatters / Index Sets

Proc 0

Proc 1

MPI_Vec

0

1

2

3

4

5

SeqVec (0)

0

1

2

3

SeqVec (1)

0

1

2

3

0 0

1 1

22

33

2 0

3 1

24

35

VecScatterCreate(MPI_Vec,ISFrom,SeqVec,ISTo,&scatter)
VecScatterBegin(), VecScatterEnd()

ISFrom ISTo

ISFrom ISTo

25

Communication and Physical Discretization

Communication

Data Structure
Creation

Ghost Point
Data Structures

Ghost Point
Updates

Local
Numerical

Computation
Geometric

Data

DA
AO

DACreate() DAGlobalToLocal()
Loops over
I,J,K
indices

stencil
[implicit]

VecScatter
AOVecScatterCreate() VecScatter() Loops over

entities

elements
edges

vertices
unstructured meshes

structured meshes 1

2

26

Portability Issues

• Use makefiles and environment variable
(PETS_ARCH) to manage multiple architectures.

• Machine specific functionality.
• Run test-suite on various architectures every night.
• Provide support to avoid machine specific

information in the user’s code and makefiles.

27

Performance Issues

• Flexible design to allow experimentation.
• Do certain optimizations after analyzing performance.
• Use –log_summary as a tool, but always use API, tuned for

high performance.
• Modular design enables multiple implementations of the

same component (AIJ,BAIJ etc..)
• Machine specific optimizations possible (using fortran

kernels, for loops etc..)
• Create once and reuse – Scatters, factorizations etc..
• Pay attention to data layout/cache issues.

28

Performance through Multiple Implementations
(separate code for each block size)

0

20

40

60

80

100

MFlop

/sec

B
a

si
c

B
lo

ck
ed

Matrix-vector products
Triangular solves

• 3D compressible Euler code
• Block size 5
• IBM Power2

29

Other Issues

• Object header, creation, composition, dynamic methods etc.
• Extensive and consistent error handling.
• Profiling interface – application information, performance.
• Fortran interface/Fortran 90 support.
• Viewers – to debug/visualize PETSc objects.
• Interoperability with BlockSolve, PVode, Overture.
• Alice memory snooper(AMS), Toolkit for Advanced

Optimization(TAO).

30

Caveats Revisited

• Developing parallel, non-trivial PDE solvers that
deliver high performance is still difficult, and
requires months (or even years) of concentrated
effort.

• PETSc is a toolkit that can ease these difficulties
and reduce the development time, but it is not a
black-box PDE solver nor a silver bullet.

• Users are invited to interact directly with us
regarding correctness or performance issues by
writing to petsc-maint@mcs.anl.gov.

