

PETSc Philosophy

Writing hand-parallelized application codes from scratch is
extremely difficult and time consuming.

Scalable parallelizing compilers for real application codes
are very far in the future.

We can ease the development of parallel application codes

by developing general-purpose, parallel numerical PDE
libraries.

Caveats

— Developing parallel, non-trivial PDE solversthat deliver high
performance is still difficult, and requires months of concentrated
effort.

— PETScisatoolkit that can reduce the development time, but it is
not a black-box PDE solver nor asilver bullet.

Component Interactions for
Numerical PDEs

'@ ’

|

PETSc
emphasis

PETSc Layering

Sample PETSc Numerical

Nonlinear Solvers Time Steppers
Newton-based Methods '
Other Euler Baék:/vard Psse;tudo Tlme Other
Line Search | Trust Region uler ePping
Krylov Subspace Methods
GMRES CG CGS | Bi-CG-STAB | TFOMR | Richardson | Chebychev | Other
Preconditioners
Additive Block . LU
Schwartz Jacobi Jacobl LU IcC (Sequential only) Others
Matrices
Compressed Blocked Compressed Block
Sparse Row Sparse Row Diagonal Dense Other
(AL)) (BAL)) (BDIAG)
Vectors |Index Sets
Indices Block Indices Stride Other

Flow of Control for a Non-Linear
Solve

Nonlinear Solvers (SNES)

Linear Solvers (SLES)

€ User code <> PETSc code

The PETSc Programming Model

e Goals
— Portable, runs everywhere

— Performance
— Scalable parallelism

e Approach
— Distributed memory, “shared-nothing”
* Requires only acompiler (single node or processor)
 Access to data on remote machines through MPI
— Can still exploit “compiler discovered’ parallelism on each node
(e.g., OpenMP)
— Hide within parallel objects the details of the communication

— User orchestrates communication at a higher abstract level than
message passing

A Freely Avallable and Supported
Research Code

Available via http://www.mcs.anl.gov/petsc

Usable in C, C++, and Fortran77/90 (with minor
limitations in Fortran 77/90 due to their syntax)

Users manual

Hyperlinked manual pagesfor all routines
Many tutorial-style examples

Support viaemalil: petsc-maint@mcs.anl.gov

True Portabllity

o Tightly coupled systems
— Cray T3D/T3E
— SGI/Origin
— IBM SP
— Convex Exemplar

* Loosdy coupled systems, e.g., networks of workstations

— Sun OS, Solaris — Freebsd

— IBM AIX — Windows 98/2000
— DEC Alpha — Mac OS X

— HP — BeOS

— Linux

Collectivity

MPI communicators (MPlI_Comm) specify collectivity
(processors involved in a computation)

All PETSc creation routines for solver and data objects are
collective with respect to a communicator, e.g.,
VecCreate(MPl_Comm comm, int m, int M, Vec *X)

Some operations are collective, while others are not, e.g.,
— collective: VecNorm()
— not collective: VecGetLocalSize()

If a sequence of collective routinesis used, they must be
called in the same order on each processor

Overview

How to specify the mathematics of the problem

— Dataobjects
e vectors, matrices

How to solve the problem
— Solvers
* Nonlinear solvers
Design
— Extensibility
Parallel computing complications

— Pardld datalayout/ Ghost values
Scatter routines, index sets

Other Issues

— Portability

— Peformance

Fluid application using PETSc

Vectors

» Fundamental objectsfor storing field oroc 0
solutions, right-hand sides, etc.
 VecCreateMPI(...,Vec *) proc 1
— MPI_Comm - processors that share the
Vector proc 2
— number of elements local to this processor
— total number of elements proc 3
o Each processlocally owns a sub- oroc 4

vector of contiguously numbered
global indices

Sparse Matrices

« Fundamental objectsfor storing
linear operators (e.g., Jacobians)

 MatCreateMPIAIJ(...,Mat *)

— MPI_Comm - processors that share the proc 0
matrix proc 1

— number of local rows and columns proc 2
proc 3

— number of global rows and columns

— optional storage pre-allocation
Information

proc 4

e Each processlocally ownsa
sub-matrix of contiguously
numbered global rows.

Parallel Matrix and Vector Assembly

Processes may generate any entries in vectors and matrices

Entries need not be generated by the process on which they
ultimately will be stored

PETSc automatically moves data during assembly if necessary
Vector example:

 VecSetValues(Vec,...)
— number of entriesto insert/add
— indices of entries
— valuesto add

— mode:
[INSERT_VALUES,ADD VALHE<]

. VeCAssemnyBegin(\ﬁ Agregation of Communication

 VecAssemblyEnd(Vec)

Solvers: Usage Concepts

Solver Classes Usage Concepts
 Linear (SLES) e Context variables
* Nonlinear (SNES) e Solver options

e Timestepping (TS) « Callback routines

o Customization/Extensibility

Basic Nonlinear Solver Code (Fortran)

Context Variable
SNES sne§/

Mat J
Vec X, F
int n, Its

call MatCreate(MPI_COMM_WORLD,n,n,J ierr)
call VecCreate(MPI_COMM_WORLD,n,x,ierr)
call VecDuplicate(x,F,ierr)

call SNESCreate(MPI_COMM_WORLD,SNES_NONLINEAR_EQUATIONS
call SNESSetFunction(snes,F,EvaluateFunction,PETSGCy NULL,ierr)

call SNESSetJacobian(snes,J,EvaluateJacobian,PETSC _NULL,ierr)

call SNESSetFromOptions(sneg,ierr)
call SNESSolve(snes,x,its,ierr)

Callback Functions

Set Solver Options

Setting Solver Options

o Standard function call interface:
SNESSetType(SNES snes,SNESType

type)

e Using options database from command
line
-snes_type [ls, ts, ..]

Design and Extensibility

 |llustrate using Preconditioner object PC

PCCreate(..... &pC)
PCSetType(pc, PC_TYPE)

PC_TYPE (defaults)
 Jacobi, Bjacobi,SOR,ILU,ICC,LUASM

PCApply() Implementation

PCApply(PC pc,Vec x,Vecy)

{
(* pc->ops->apply)(pPC.X,y);
}
pC->0ps->apply
o PCApply Jacobi()
o PCApply BJacobi()
o PCApply ILU()
 PCApply ASM()

PETSc Objects

Type = BJacobi
Mat = ptr to mat

Object Reference Library Code

20

Extensibility of PC

PCRegister(“newtype",0," PCCreate_ NewType",PCCreate NewType);

PCCreate NewType(PC pc)

{
pPC->0ps->setup = PCSetUp_ NewTyps;
pc->ops->apply = PCApply NewTyps;
pc->0ps->destroy = PCDestroy NewType;

}

Extensibility Issues

 Most PETSc objects are designed to allow oneto
“drop In” anew implementation with a new set of
data structures (similar to implementing a new
classin C++).

« Heavily commented example codes include
— Krylov methods. petsc/src/sles/ksp/impls/cg
— preconditioners. petsc/src/sles/pc/impls/jacobi

Data Layout/Ghost Values

@® Loca node O Ghost node

s et

W

VecScatters / Index Sets

> 0 0
0 0
1 1
Pr 2 2
ocO 1 1
ﬁ 3 3
2 | — 9 ISFrom ISTo
»
3
3 2 0
SeqVec (0) 3 1
Proc 1 4 >
4 2
5 3
5)
ISFrom ISTo
MPI

SeqVec (1)

VecScatterCreate(MPI_Vec,| SFrom,SeqVec,| STo,& scatter)

VecScatterBegin(), VecScatterEnd()

Communication and Physical Discretization

Communication L ocal
Geometric Data Structure Ghost Point Ghost Point Numerlcgl
Data Creation DataStructures Updates Computation

stencil DA L oops over

[ImpllCIt] DAcreate() AO DAGIobal ToLocal() | IK
indices
structured mesnhes A\
[|

dements - V ecScatter

edges VecScatterCreate() AO VecScatter() L oops over
vertices QU F | P crities

unstructured meshes 2

Portability Issues

Use makefiles and environment variable
(PETS ARCH) to manage multiple architectures.

Machine specific functionality.
Run test-suite on various architectures every night.

Provide support to avoid machine specific
Information in the user’ s code and makefiles.

Performance Issues

Flexible design to allow experimentation.
Do certain optimizations after analyzing performance.

Use—-og summary as atool, but always use API, tuned for
high performance.

Modular design enables multiple implementations of the
same component (AlJ,BAlJ etc..)

Machine specific optimizations possible (using fortran
kernels, for loops €tc..)
Create once and reuse — Scatters, factorizations etc..

Pay attention to data layout/cache issues.

Performance through Multiple Implementations

100 _

80 |

MFlop 60
fsec 40

2
0
@©
m

ge]
D
X
3}
L=
m

(separate code for each block size)

3D compressible Euler code
Block size5
IBM Power2

B Matrix-vector products
O Triangular solves

Other Issues

Object header, creation, composition, dynamic methods etc.
Extensive and consistent error handling.

Profiling interface — application information, performance.
Fortran interface/Fortran 90 support.

Viewers —to debug/visualize PET Sc objects.
Interoperability with BlockSolve, PVode, Overture.

Alice memory snooper(AMYS), Toolkit for Advanced
Optimization(TAO).

Caveats Revisited

« Developing parallel, non-trivial PDE solvers that
deliver high performance is still difficult, and
reguires months (or even years) of concentrated
effort.

e PETScIisatoolkit that can ease these difficulties
and reduce the development time, but it iIsnot a
black-box PDE solver nor asilver bullet.

o Usersareinvited to interact directly with us
regarding correctness or performance issues by
writing to petsc-maint@mcs.anl.gov.

