Parallel CED Workshop, Experiences in Implementation

Efficient Parallelization of an Unstructured Grid Solver:
A Memory-Centric Approach

Dinesh K. Kaushik
MCS Division, Argonne National Laboratory
& CS Deptartment, Old Dominion University
David. E. Keyes

CS Deptartment, Old Dominion University
& ICASE, NASA Langley Research Center

Acknowledgments
William D. Gropp
MCS Division, Argonne National Laboratory
Barry F. Smith
MCS Division, Argonne National Laboratory
W. K. Anderson
FMAD Division, NASA Langley Research Center

June 16, 1999

Organization of Presentation

e [ssues for unstructured grid domain decomposition methods
e Implications of memory hierarchy

e Latency tolerance

e Background of FUN3D and PETSc

e Parallelization philosophy

e [llustrations of general performance issues

e Summary of serial and parallel performance

e Conclusions and future plans

D. K. Kaushik, ANL & ODU 16 Jun 99

Solving Unstructured Mesh Problems in Serial

Loss of regularity in unstructured mesh solvers
e makes them more memory intensive

e reduces the locality in data refence patterns (which is required to get
good cache performance)

e results in very high memory bandwidth since cache lines might be
loaded multiple times

e requires lot of integer operations that make these solvers more suscep-
tible to run into operation issue limitations

D. K. Kaushik, ANL & ODU 16 Jun 99

Solving Unstructured Grid Problems in Parallel:
Main Issues

e SPMD parallelization of unstructured grid solvers is complicated by the fact
that no two interprocessor data dependency patterns are alike

e The user-provided global ordering may be incompatible with the subdomain-
contiguous ordering required for high performance and convenient SPMD
coding

D. K. Kaushik, ANL & ODU 16 Jun 99

The Widening Gap between Memory and CPU

e Memory latency improvement is about 7% per year.

e CPU improvement is 35% per year until 1986, and 55% per year thereafter.

Figure from Hennessy and Patterson, page 374.

D. K. Kaushik, ANL & ODU 16 Jun 99

Some Important Dimensionless Numbers

e Typical number of cycles lost on a cache miss:

10 — 100

e Typical number of cycles lost on a page fault:

10° — 107
e Typical transfer rate for eight bytes per floating point operation time:

10 — 100

e Typical message initiation latency per floating point operation time:

100 — 1,000

D. K. Kaushik, ANL & ODU 16 Jun 99

Implications of Memory Hierarchy

e Arrange for temporal locality

— Once an operand is cached on a processor, use it as many times as
practical before sending it “down” or “out”

e Arrange for spatial locality

— When an operand needs to be moved “up” or “across”, fill up the
slots in the same packet with other operands that will be required
S00N

e Don't agonize over flops

— Flops are cheap compared with memory transfers, so do some ezx-
tra work per data transfer-laden “cycle” if it reduces the number of
cycles

e Agonize over (low) bandwidth and (high) latency tolerance

D. K. Kaushik, ANL & ODU 16 Jun 99

Latency Tolerance — Architect’s Perspective

In “latency” we include both the startup (size-independent) part of the data
access (when remote data is ready) and the synchronization cost (when remote

data is not ready). There are two classes of latency tolerance strategies (from
D. Culler, et al., 1998, Chapter 11):

e Amortize the latency:
— Block data transfers
e Cover the latency:

— Precommunication
— Proceeding past an outstanding communication in the same thread
— Multithreading
The requirements are excess concurrency in the program (beyond the number of

processors being used) and excess capacity in the memory and communication
architecture.

D. K. Kaushik, ANL & ODU 16 Jun 99

Why Library Based Approach?

e compilers can not do all
e users should not do more than once

e advantges of modern programming practices should be harnessed

D. K. Kaushik, ANL & ODU 16 Jun 99

My Objective

e To share with you our experiences of parallelizing an unstructured grid code
using a library based approach

e To highlight the important issues (especially the memory centric code im-
plementations) to get good performance

D. K. Kaushik, ANL & ODU 16 Jun 99

Description of the Legacy Code - FUN3D
(http://fmad-www.larc.nasa.gov/ "wanderso/Fun/fun.html)

e FUN3D is a tetrahedral vertex-centered unstructured grid code developed
by W. K. Anderson (LaRC) for compressible and incompressible Euler and
Navier-Stokes equations

e Parallel experience is with Euler so far, but nothing in the solution algo-
rithms or software changes when viscosity and turbulence are added; only
convergence rate will vary with conditioning, as determined by Reynolds
number (and mesh)

e FUN3D uses 1st- or 2nd-order Roe for convection and Galerkin for diffusion,
and false timestepping with backwards Euler for nonlinear continuation to-
wards steady state

e Solver is Newton-Krylov; timestep is advanced towards infinity by the switched
evolution /relaxation (SER) heuristic of Van Leer & Mulder

D. K. Kaushik, ANL & ODU 16 Jun 99

Edge-based Loops for Flux Computation

e Used inside Newton loop in every residual evaluation

e Used inside Krylov loop in every matrix-vector product

read variables .____

nl
n2
COmpV

Variables at each node: ni

density,

momentum (x,y,z),

energy, .

pressure update variables TN

n2

Variables at edge:

identity of nodes, v

orientation(x,y,z) nl

D. K. Kaushik, ANL & ODU

16 Jun 99

PETSc —
a Portable Extensible Toolkit for Scientific Computing

e Gives relatively high-level expression to preconditioned iterative linear solvers,
and Newton iterative methods

e Supports complex arithmetic
e Ports wherever MPI ports; committed to progressive MPI tuning

e Permits great flexibility (through object-oriented philosophy) for algorith-
mic innovation

e Freely available (http://www.mcs.anl.gov/petsc)
e Callable from FORTRANT7, C, and C++; written in C

e Includes diagnostic, monitoring, and visualization GUIs

D. K. Kaushik, ANL & ODU 16 Jun 99

Integration with the Library - PETSc
(http://www.mcs.anl.gov/petsc)

Main Routine
L Nonlinear Solver (SNES) M aIrlx Vector
[Linear Solver (SLES) } PETSC

NS oa

Application Function Jacobian Post-
Initialization Evaluation Evaluation Processing

D. K. Kaushik, ANL & ODU 16 Jun 99

Object-Oriented Design of PETSc — Abstraction

e Abstraction denotes the essential characteristics of an object that distinguish
it from all other kinds of objects.

e Flach PETSc object has an abstract structure defined in
$ (PETSC DIR) /src/<component>/<component>impl.h
For example,

struct _p_Vec {

PETSCHEADER
struct _VeOps ops;
void *data;

};

typedef _p_Vec* Vec;

D. K. Kaushik, ANL & ODU 16 Jun 99

Object-Oriented Design of PETSc — Encapsulation

e Information hiding is very important for the development of representation
free (generic) data structures.

e PE'T'Sc hides the implementation from interface. This is done by providing
the pointer, void *data which is implementation specific.

e At the time of construction, each object provides a representation for its
private context (i.e., the data pointer) and supplies the implementation of
member functions (which are declared static to limit their visibility to the
source code within a particular file only).

D. K. Kaushik, ANL & ODU 16 Jun 99

Object-Oriented Design of PETSc — Modularity

e Modularity is the division of a complex system into several tractable com-
ponents.

e Higher level abstractions (data structures and routines) are built by using
lower level abstractions, which may be built on even simpler modules.

e Nonlinear solver (SNES) context is built on the top of linear solver (SLES)
context which is built on the sparse matrix class.

D. K. Kaushik, ANL & ODU 16 Jun 99

Object-Oriented Design of PETSc — Hierarchy

e Hierarchy is the ranking or ordering of abstractions.

e Inheritance (with polymorphism) is a very powerful mechanism for software
reuse and future extensibility.

e PETSc has only a shallow inheritance tree.

e Flach implementation of a particular abstract structure is an instance of a
derived object, e.g., MatSeqAlJ, MatMPIAILJ, MatSeqBAIJ etc.

D. K. Kaushik, ANL & ODU 16 Jun 99

Solving a Nonlinear Problem with PETSc
struct _p_SNES {

PETSCHEADER
[* —mmmmm o User-provided stuff -----—----—--——---——
void *user; /* user—-defined context */

int (kcomputefunction) (SNES,Vec,Vec,void*); /* function routine */

int (kcomputejacobian) (SNES,Vec,Mat*,Mat*,MatStructure*,void*) ;

D. K. Kaushik, ANL & ODU 16 Jun 99

Conversion of Legacy FUN3D into PETSc/MPI version

e Project begun 10/96, completed 3/97, undergoing continual enhancement

e Five-month (part-time) effort included:

— learning FUN3D and the PUNS3D mesh preprocessor
— learning the MeTiS partitioner
— adding and testing new functionality in PETSc
— restructuring FUN3D from vector to cache orientation
e Approximately 3,300 of 14,400 F77 lines of FUN3D retained (primarily as

“node code” for flux and Jacobian evaluations); PETSc solvers used for the
rest

D. K. Kaushik, ANL & ODU 16 Jun 99

Solving Unstructured Grid Problems in Parallel:
Basic Outline of the Solution Strategy

e Follow the “owner computes” rule under the dual constraints of minimizing
the number of messages and overlapping communication with computation

e Flach processor “ghosts” its stencil dependences in its neighbors
e Ghost nodes ordered after contiguous owned nodes
e Domain mapped from (user) global ordering into local orderings

e Scatter/gather operations created between local sequential vectors and
global distributed vectors, based on runtime connectivity patterns

e Newton-Krylov-Schwarz operations translated into local tasks and commu-
nication tasks (nonblocking for overlap where hardware supports)

D. K. Kaushik, ANL & ODU 16 Jun 99

Three Different Orderings - In Focus

12

Application Ordering
13 14

15

10

11

PETSc Ordering
6 7 14 15
4 5 12 13
2 3 10 11
0 1 8 9

Local Ordering for Processor O
6

7 11
4 5
2 3
0 1 8

10

Local Ordering for Processor 1

11 6 7
10
. 5
9
) 3
8 0 1

Scattering Between the Orderings

e After establishing different orderings, establish the “scatter” between the
global and local vectors in the following way :

ISCreateStride (MPI_COMM_SELF,bs*nvertices,0,1,&islocal) ;
ISCreateBlock (MPI_COMM SELF,bs,nvertices,svertices,&isglobal);

VecScatterCreate(x,isglobal,user.localX,islocal,&user.scatter);

e Next, before using the local vector in any subroutine, carry out the scatter
operation :

VecScatterBegin(X,localX, INSERT VALUES,SCATTER FORWARD, scatter) ;
VecScatterEnd(X,localX,INSERT_VALUES,SCATTER_FORWARD, scatter);

D. K. Kaushik, ANL & ODU 16 Jun 99

Pseudo-Transient Newton-Krylov-Schwarz Algorithm
(after Cai, Gropp, Keyes, and Tidriri (1994))

for (1 = 0; 1 < n_time; 1++) {
SELECT TIME-STEP
for (k = 0; k < n_Newton; k++) {
compute nonlinear residual and Jacobian
for (j = 0; j < n_Krylov; j++) {
forall (i = 0; i < n_Precon ; i++) {
solve subdomain problems concurrently
} // End of loop over subdomains
perform Jacobian-vector product
ENFORCE KRYLOV BASIS CONDITIONS
update optimal coefficients
CHECK LINEAR CONVERGENCE
} // End of linear solver
perform DAXPY update
CHECK NONLINEAR CONVERGENCE
} // End of nonlinear loop
} // End of time-step loop

D. K. Kaushik, ANL & ODU

16 Jun 99

Problem Specific Settings for VNKS

e “its” represents the number of pseudo-transient Newton steps — one New-
ton step per timestep, with SER growth in timestep up to a CFL of 100,000,
and with a maximum number (60) of Schwarz-preconditioned GMRES steps
per Newton step with relative tolerance of 10~

e Convergence defined as a relative reduction in the norm of the steady-state
nonlinear residual by a factor of 1071

e Jacobian matrix is never constructed explicitly; it is applied in matrix free
way with second order of accuracy for the final solution

e The preconditioner (incomplete LU with zero fill) in each domain is derived
from from 1Ist-order accurate jacobian

D. K. Kaushik, ANL & ODU 16 Jun 99

Surface Visualization of Test Domain (M6 wing)

D. K. Kaushik, ANL & ODU 16 Jun 99

IMlustrative Solution of “Lambda Shock” Case

D. K. Kaushik, ANL & ODU 16 Jun 99

Performance Tuning — Three Fronts

e Algorithmic Tuning

— Choose “optimal” compromise of large number of nonorthogonal param-
eters

e Compiler Transformations
— Free the compiler to do what it does best
e Data Layouts

— Stay in harmony with the memory hierarchy

D. K. Kaushik, ANL & ODU 16 Jun 99

Algorithmic Tuning for NKS Solver

e Continuation parameters: discretization order, initial timestep, timestep
evolution

e Newton parameters: convergence tolerance, globalization strategy, Jacobian
refresh frequency

e Krylov parameters: convergence tolerance, subspace dimension, restart num-
ber, orthogonalization mechanism

e Schwarz parameters: subdomain number, subdomain solver, subdomain
overlap, coarse grid usage

e Subproblem parameters: fill level, number of sweeps

D. K. Kaushik, ANL & ODU 16 Jun 99

Algorithmic Tuning — Continuation Parameters

e SER heuristic .)
/()]

Lf (1]

14 _ a70
2@%@ | ZQ»JN

e Parameters of Interest

— Initial CFL number

— Exponent in the Power Law
> 1 for first-order discretization (1.5)
< 1 at outset of second-order discretization (0.75)
= 1 normally

— Switch over Ratio between FO and SO

D. K. Kaushik, ANL & ODU 16 Jun 99

100 | | | | | I | | | | | I | | | | | I | |
Effect of Initial CFL
102 (OGrid on 128 T3E Processors) |
10* -
=
g 10° -
©
- e
2 50 \ — Initial CFL = 10 B
(n -
D \ — — — — Initial CFL = 50
o \
1020 |- \ _
\
\
10" |- \ -
10—14 | | | | | I | | | | | I | | | | | I | |
0 50 100 150

Pseudo-time Iterations

D. K. Kaushik, ANL & ODU 16 Jun 99

Algorithmic Tuning — Krylov Parameters

e These parameters were chosen after lot of experiments
e Convergence Tolerance

— a value of 0.01 works well for most of the cases run
e Subspace Dimension

— depends on the problem dimension

— typical values range from 10 (for smallest problem) to 60 for the largest
problem

e Resrtart Number

— dependent on the available memory

— typical values are 15 to 30

D. K. Kaushik, ANL & ODU 16 Jun 99

Optimal Granularity of Decomposition

For cache-based microprocessors, granularity of domain decomposition
iterative methods is determined by three forces:

e Convergence Rate
usually deteriorates with increased granularity

¢ Communication Volume
increases with increased granularity

e Size of Local Working Set
fits better into successively smaller cache levels with increased granularity

D. K. Kaushik, ANL & ODU 16 Jun 99

Compiler Transformations

e Choose the highest level of optimization that give the right result
e Effect of different compiler flags (Origin 2000)

—-Ofast : does aggressive optimization (including O3 optimizations)

—-OPT:IEEE _arithmetic=1 : inhibits optimizations that produce
less accurate results than required by ANSI/IEEE 754-1985

—-OPT:div split=off : disables the calculation of x/y as x*(1.0/y)

—-03 : level 3 optimization

D. K. Kaushik, ANL & ODU 16 Jun 99

Execution Time for Sequential Case
(BigSample, 22677 nodes)

300 -

: B -Ofast

i B -Ofast, IEEE Arithmetic = 1
250 |- B -Ofast, div Split = off

i -Ofast, IEEE Arithmetic = 1, div Split = off

-0O3

200 |-
150 |~
100

D. K. Kaushik, ANL & ODU 16 Jun 99

Execution Time on 32 Processors

800 (1Grid, approximately 11000 nodes per processor)
750 |-

- B -Ofast
200 |- B -Ofast, IEEE Arithmetic = 1

- B -Ofast, div Split = off

- -Ofast, IEEE Arithmetic = 1, div Split = off
650 -

- -0O3
600 |-
550 |
500 |-
450
400 |
350 |-
300L

D. K. Kaushik, ANL & ODU 16 Jun 99

Data Layouts

e Choose data layouts that enhance locality at every level of Memory hierarchy
e Storage/use patterns should follow memory hierarchy

— Blocks for Registers
block storage format for multicomponent systems — saves CPU

cycles
— Interlaced Data Structures for Cache
choose
wl,vl,wl, pl,u2,v2, w2,p2, ...
in place of

wl,u2,...,vl,02,...,wl,w2,...,pl,p2,...

— Subdomains for Distributed Memory
“chunky” domain decomposition for optimal surface-to-volume
(communication-to-computation) ratio

— This hierarchy is concerned with different issues than the algorithmic
efficiency issues associated with hierarchies of grids

D. K. Kaushik, ANL & ODU 16 Jun ’99

Data Layouts(contd.) — Reorderings

e [idge Reordering

— sort the nodes at either ends of the edges
— this effectively transforms an edge based loop into a node based loop

— enhances temporal locality

e Node Reordering
— * Reverse Cuthill Mckee (RCM)

* Fast Sloan

D. K. Kaushik, ANL & ODU 16 Jun 99

Locality Enhancing Strategies in Serial

e Flow over M6 wing with fixed-size grid of 22,677 vertices (90,708 DOFs
incompressible; 113,385 DOFs compressible)

e Turn on each optimization one by one to isoalate the effect of each

e ['ive architectures considered: Cray T3E, IBM SP, Origin 2000, Intel Pen-
tium, and Sun Ultra

e Impact of these techniques vary on different architecures — improvement
ranges from 2.5 on Pentium to 7.5 on SP

D. K. Kaushik, ANL & ODU 16 Jun 99

Sequential Performance on IBM SP
IBM P2SC (“thin”), 120MHz, cache: 128KB data and 32 KB instr

Enhancements Results

Field Structural Edge Incompressible Compressible
Interlacing | Blocking | Reordering | Time/Step | Ratio | Time/Step | Ratio
165.7s| — 237.6s| —

X 62.1s| 2.67 85.8s| 2.77

X X 50.0s| 3.31 65.7s| 3.62

X 43.3s | 3.82 67.5s| 3.52

X X 33.5s | 4.95 50.8s| 4.68

X X X 22.1s| 7.51 32.2s| 7.37

D. K. Kaushik, ANL & ODU

16 Jun 99

Sequential Performance on Intel Pentium
Intel Pentium II (NT), 400MHz, cache: 16KB data / 16KB instr / 512KB L2

Enhancements Results
Field Structural Edge Incompressible Compressible

Interlacing | Blocking | Reordering | Time/Step | Ratio | Time/Step | Ratio
70.3s| — 108.5s| —

X 44.1s| 1.59 70.1s| 1.95

X X 37.4s| 1.88 57.3s| 1.89

X 43.8s| 1.61 72.4s| 1.50

X X 34.0s| 2.07 54.5s | 1.99

X X X 27.6s| 2.55 43.2s| 2.51

D. K. Kaushik, ANL & ODU 16 Jun 99

Sequential Performance on SGI Origin
MIPS R10000, 250MHz, cache: 32KB data / 32KB instr / 4MB L2

Enhancements Results
Field Structural Edge Incompressible Compressible

Interlacing | Blocking | Reordering | Time/Step | Ratio | Time/Step | Ratio
83.6s| — 140.0s| —

X 36.1s| 2.31 57.5s| 2.44

X X 29.0s| 2.88 43.1s| 3.25

X 29.2s | 2.86 59.1s| 2.37

X X 23.4s| 3.97 39.7s| 3.92

X X X 16.9s| 4.96 24.5s | 5.71

D. K. Kaushik, ANL & ODU

16 Jun 99

Performance Monitoring — Hardware Counters

e Hardware counters available on almost all modern architectures
e Flach vendor provides own interface performance monitoring
e At least two independent efforts to provide a portable user interface

— PCL — The Performance Counter Library from Central Institute for
Applied Mathematics, Research Centre Juelich, Germany

— RABBIT — A Performance Counters Library for Intel Processors and
Linux from Ames Laboratory

e PerfAPI — Performance Data Standard and API project is directed towards
a possible standard

D. K. Kaushik, ANL & ODU 16 Jun 99

Hardware Profiling on SGI Origin

e TLB Misses
e Primary Cache Misses
e Secondary Cache Misses

e Graduated Loads and Stores Per Floating Point Instruction

D. K. Kaushik, ANL & ODU 16 Jun 99

10°

TLB Misses

Base NOER
Base

Interlacing NOER
Interlacing
Blocking NOER
Blocking

D. K. Kaushik, ANL & ODU

16 Jun 99

6E+08

5E+08

4E+08

3E+08

2E+08

1E+08

Primary Cache Misses

Base NOER
Base

Interlacing NOER
Interlacing
Blocking NOER
B Blocking

D. K. Kaushik, ANL & ODU

16 Jun 99

7E+07

6E+07

5E+07

4E+07

3E+07

2E+07

1E+07

Secondary Cache Misses

Base NOER
Base

Interlacing NOER
Interlacing
Blocking NOER
B Blocking

D. K. Kaushik, ANL & ODU

16 Jun 99

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

Graduated Loads and Stores / Floating Point Instruction

Base NOER
Base

Interlacing NOER
Interlacing
Blocking NOER
B Blocking
‘ []

D. K. Kaushik, ANL & ODU

16 Jun 99

Notes on Parallel Efficiency

Conflicting definitions of parallel efficiency abound, depending upon two choices:
e What scaling is to be used as the number of processors is varied?

— overall fixed-size problem
— varying size problem with fixed memory per processor

— varying size problem with fixed work per processor
e What form of the algorithm is to be used as number of processor is varied?

— reproduce the sequential arithmetic exactly

— adjust parameters to perform best on each given number of processors
Our charts include both overall fixed-size scaling and approximately fixed mem-
ory per processor (Gustafson) scaling

We always adjust the subdomain blocking parameter to match the number of
processors, one subdomain per processor; this causes the number of iterations
to vary

D. K. Kaushik, ANL & ODU 16 Jun 99

Notes on Parallel Efficiency, cont. (2)

Effect of changing-strength preconditioner and effect of parallel overhead are
often separated into algorithmic and implementation factors

e Customary definition of overall efficiency in going from ¢ to p processors

(p>q):

q-T(q)
n(plg) = g

where T'(p) is the overall execution time on p processors (measured)

e Factor T'(p) into I(p), the number of iterations, and C'(p), the average cost
per 1teration.

e Algorithmic efficiency is measure of preconditioning quality (measured):

Natg(P|q) = WMMW

e Implementation efficiency is remaining (inferred, not directly measurable)
factor:

ﬁéxzav — g

D. K. Kaushik, ANL & ODU 16 Jun 99

Notes on Parallel Efficiency, cont. (3)

e Convergence rate typically degrades slightly as number of processors is in-
creased, due to introduction of concurrency in preconditioner — highly
partition-dependent

e Implementation efficiency may improve slightly as processors are added, due
to smaller workingsets — better cache residency

e Implementation efficiency ultimately degrades as communication-to-computation
ratio increases

D. K. Kaushik, ANL & ODU 16 Jun 99

Measuring the Parallel Performance

e We have used PETSc’s profiling and logging features

e PE'TSc uses manual counting of flops, which are afterwards aggregated over
all the processors for parallel performance statistics

e Time devoted to [/O and data partitioning

e Code is preloaded into memory by doing one nonlinear iteration to avoid
the timing variations caused by disk paging

e Our base processor number (for scalability calculations) is such that the
problem has just fit into the local memory

D. K. Kaushik, ANL & ODU 16 Jun 99

2.5

50

Parallel Performance of Incompressible Solver on Cray T3E
ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices (about 11 million unknowns) on

upto 1024 Cray T3E 600 MHz processors

xlp

Avg. Vertices per Proc.

128 256 384 512 640 768 896 1024

2500

| 20000

1 1500¢

1 1000¢

500;

Execution Time (S)

128 256 384 512 640 768 896 1024

1.2

0.8
0.6/
0.4

| 0.2

1,

Implementation Efficiency

0 128 256 384 512 640 768 896 1024

Nonlinear lterations

128 256 384 512 640 768 896 1024

D. K. Kaushik, ANL & ODU

100

Mflop/s per Proc.

128 256 384 512 640 768 896 1024

80

| 60

401

| 20

Aggregate Gflop/s

128 256 384 512 640 768 896 1024

16 Jun 99

Parallel Performance on Cray T3E, contd.

Efficiency Communication | sustained | sustained

inner | halo Mflop/s total

procs | its time | speedup | Naig | Nimpt | Noveran | prod. | exch. | per proc. | Gflop/s
128 | 372,288.5s| 1.00 |[1.00|1.00 | 1.00 | ™% 3% 87.6 11.2
256 38121358 1.89 |097]097| 094 | 8% 4% 85.7 21.9
512 | 41| 658.6s| 3.47 [0.90[096 | 087 | 9% 4% 84.0 43.2
1024 | 42| 394.6s| 580 [0.83]0.82 | 0.72 | 20% 6% 4.7 76.5

e Principal nonscaling feature is global inner products (growing to 20% of execution
time for 1024 nodes), due mostly to synchronization delays

D. K. Kaushik, ANL & ODU 16 Jun 99

Multithreading for Synchronization Relief

e Typical critical path in a nonlinear implicit method:
..., solve, bound step, update, solve, bound step, update, solve,

e There are other useful operations to perform, off the critical path:

— refresh Jacobian

— test convergence

— adapt continuation and algorithmic parameters

— perform interprocessor communication and disk 1/0

— visualize, filter, compress, data mine, .
e Some “off the path” tasks enjoy considerable locality

e Parallelizability of “naked” sparse linear problems may be unrealistically pessimistic, rela-
tive to full simulations

D. K. Kaushik, ANL & ODU 16 Jun 99

Effect of Data Partitioning Strategies:

pmetis vs. kmetis

e pmetis attempts to balance the number of nodes and edges on each partition

e kmetis tries to reduce the number of non-contiguous subdomains and connectivity of the
subdomains

e We observe that kmetis gives slightly better scalability (especially when granularity is large)

pmetis
kmetis

Parallel Speedup

Ll | I
768

L Ll I
896

I Ll
1024

Ll Ll |
256

I IR | |
384

512 640
Processors

=
N
[00]

D. K. Kaushik, ANL & ODU 16 Jun 99

Parallel Scalability of M6 Euler Flow
with Fixed-Storage-Per-Processor

Vertices | No. Procs | Vert/Proc | Its | Time | Time/It
357,900 80 4474 78 1559.93s | 7.18s
53,961 12 4497 36 |265.72s | 7.38s

9,428 2 4714 19 | 131.07s| 6.89s

e Convergence is strongly dependent on resolution

e Implementation efficiency is roughly flat (same execution time per iteration when same

number of vertices per processor)

D. K. Kaushik, ANL & ODU

16 Jun 99

Parallel Performance of Compressible Solver on Cray T3E,
IBM SP, and SGI Origin

Transonic flow over M6 wing; fixed-size grid of 357,900 vertices

No. Cray T3E IBM SP SGI Origin
Procs. | Steps | Time | Eff. | Steps | Time | Eft. | Steps | Time | Eff.
16 5o |2406s| — | 55 [1920s| — | 55 |[1616s| —

32 57 [1331s| .90 | 57 [1100s| .87 | 56 | 862s| .94
48 57 | 912s| 88| 57 | Trls| .83 | 56 | 618s| .87
64 57 | 700s| .86 | 56 | 587s| .82 | 57 | 493s| .82
80 57 | d77s| .83 | H9 | 548s|.70 | 57 | 420s| .77

e Number of vertices per processor ranges from 22,369 to 3,729

e Variations in iterations across machines may be attributable to different
floating points and different orders of commutative operations (e.g., inner
products)

D. K. Kaushik, ANL & ODU 16 Jun 99

Compressible versus Incompressible:
Interesting Differences Beyond the Physics

e 5 X 5 blocks of compressible model versus 4 x 4 blocks of incompressible
model change

— Balance of work performed (volumetric) to data communicated (surfa-
cial)

— Balance of work performed on in-cache data to data loaded into cache
from memory

— Balance of work performed in different phases ot the code, e.g., Jacobian

evaluation and linear solution

e In addition, compressible and incompressible models exhibit differences in
convergence rates and robustness

D. K. Kaushik, ANL & ODU 16 Jun 99

Comparison of Euler Flow Regimes
over M6 Wing on SGI Origin 2000

(1,431,600 DOFs incompressible, 1,789,500 DOFs compressible)

Fixed Size Scaling: 357,900 vertices

No. Time per | Per-Step | Impl. | FenEval | JacEval
Procs. | Steps Step | Speedup | Eff. | Mflop/s| Mflop/s
Incompressible (Mach 0) (4 x 4 blocks)

16 19 41.6s — — 2,630 359
32 19 20.3s| 2.05 1.02 0,366 736
18 | 21 141s| 295 | 098 | 7938 1,080
64 | 21 112s] 371 |093| 10545 1,398
30 21 10.1s| 4.13 0.83 | 11,661 1,092
Subsonic (Mach 0.30) (5 x 5 blocks)

6 | 17 554s] | | 2002] 2,693
32 19 29.8s| 1.86 0.93 3,921 5,214
48 19 20.58| 2.71 0.90 5,879 7,770
64 20 14.3s| 3.88 0.97 8,180 | 10,743
80 | 20 127s| 436 | 087 | 9452| 12485

D. K. Kaushik, ANL & ODU

16 Jun 99

Comparison of Euler Flow Regimes
over M6 Wing on SGI Origin 2000

Fixed Size Scaling: 357,900 vertices
(1,789,500 DOFs compressible)

No. Time per | Per-Step | Impl. | FenEval | JacEval
Procs. | Steps Step | Speedup | Eff. | Mflop/s| Mflop/s
Transonic (Mach 0.84) (5 x 5 blocks)
16 | 55 204s] — | — | 2009] 2736
322 | 56 1545 191 | 095| 4145 5437
48 56 11.0s| 266 | 0.89 5,942 7,961
64 57 8.7s| 3.39 0.8 8,103 10,531
80 57 74s| 3.99 0.80 9,856 | 12,774
Supersonic (Mach 1.20) (5 x 5 blocks)
16 | 80 192s] | | 202 2679
32 81 10.6s| 1.81 0.90 3,906 5,275
48 | 81 71s| 272 1091 | 6140 7961
64 82 0.8 3.31 0.83 7,957 10,398
30 | 80 46s| 420 | 084 | 9940| 12.889

D. K. Kaushik, ANL & ODU

16 Jun 99

Conclusions

e The near-scalable algorithms for general purpose PDE simulations that we
use today can in theory be adapted to an architectural climate of diverging
rates of computation and memory access, requiring increased concurrency
with concentrated locality

e But, in practice, we must simultaneously improve algorithmic tolerance to
the memory latency of the architecture

D. K. Kaushik, ANL & ODU 16 Jun 99

Future Directions

e Architecture-oriented

— correlate hardware counter measurements with data structure organiza-
tion and refine cache strategies in a quantitative way

e Programming model-oriented

— examine appropriate role of multi-threading within a subdomain in a

hybrid DSM/SMP programming style
e Application-oriented

— examine the relative advantages of structured and unstructured grids
from a performance perspective (partitioning and ordering flexibility ver-
sus representation efficiency)

D. K. Kaushik, ANL & ODU 16 Jun 99

References

o Achieving High Sustained Performance in an Unstructured Mesh CFD
Application (with Anderson, Gropp, Keyes, and Smith), 1999, submitted
to Gordon Bell Prize Committee.

— right performance metrics

e Newton-Krylov-Schwarz Methods for Aerodynamics Problems: Com-
pressible and Incompressible Flows on Unstructured Grids (with Keyes

and Smith), 1998, submitted to “Proc. of the 11th Intl. Conf. on Domain
Decomposition Methods”, C.-H. Lai et al., eds.

— multi-platform comparisons focus

e Prospects for CFD on Petaflops Systems (with Keyes and Smith), 1997,
in "CFD Review 1998”, M. Hafez and K. Oshima, eds., World Scientific,
Singapore, pp. 1079-1096.

— parallel scalability focus
e all these can be downloaded from

— http://www.mcs.anl.gov/petsc-fun3d

