

calibrate

SBC01-????-00

August 1, 1996

				 Prepared by:	J. W. Pflugrath

							Molecular Structure Corporation

							3200 Research Forest Drive

							The Woodlands, TX 77381

							(713) 363-1033

							(713 364-3628 (fax)

							jwp@msc.com

				 Prepared for:	Contract No. 943072401

							Mary Westbrook

							Argonne National Laboratory

							9700 South Cass Avenue

							Argonne, IL 60439

							(708) 252-8914

							(708) 252-4021 (fax)										westbrook@anlel.el.anl.gov

				 Reviewed by:	

				 Approved by:	

Copyright © 1996, 1995, 1994 Molecular Structure Corporation	

RESTRICTED RIGHTS NOTICE SHORT FORM (JUNE 1987)

Use, reproduction, or disclosure is subject to restrictions set forth in Contract No. W-31-109-ENG-38 and Contract No. 943072401 with the University of Chicago, Operator of Argonne National Laboratory.

�
TABLE OF CONTENTS

� TOC \f �1 Scope and Purpose	� GOTOBUTTON _Toc363536069 � PAGEREF _Toc363536069 �4��

1.1. References	� GOTOBUTTON _Toc363536070 � PAGEREF _Toc363536070 �4��

1.2 Definitions and Abbreviations	� GOTOBUTTON _Toc363536071 � PAGEREF _Toc363536071 �4��

2 Background	� GOTOBUTTON _Toc363536072 � PAGEREF _Toc363536072 �5��

3 Input images	� GOTOBUTTON _Toc363536073 � PAGEREF _Toc363536073 �6��

3.1 Dark or background images	� GOTOBUTTON _Toc363536074 � PAGEREF _Toc363536074 �6��

3.2 Mask image	� GOTOBUTTON _Toc363536075 � PAGEREF _Toc363536075 �6��

3.3. Flood image	� GOTOBUTTON _Toc363536076 � PAGEREF _Toc363536076 �7��

3.4 An image to determine the position of the primary beam	� GOTOBUTTON _Toc363536077 � PAGEREF _Toc363536077 �7��

4 Running calibrate	� GOTOBUTTON _Toc363536078 � PAGEREF _Toc363536078 �8��

4.1 Calibrate input	� GOTOBUTTON _Toc363536079 � PAGEREF _Toc363536079 �8��

4.2 Mouse input and the display	� GOTOBUTTON _Toc363536080 � PAGEREF _Toc363536080 �9��

4.2.1 The menubar	� GOTOBUTTON _Toc363536081 � PAGEREF _Toc363536081 �10��

4.2.1.1 File menu	� GOTOBUTTON _Toc363536082 � PAGEREF _Toc363536082 �10��

4.2.1.2 View menu	� GOTOBUTTON _Toc363536083 � PAGEREF _Toc363536083 �11��

4.2.1.3 Calibrate menu	� GOTOBUTTON _Toc363536084 � PAGEREF _Toc363536084 �12��

4.2.1.4 Help button	� GOTOBUTTON _Toc363536085 � PAGEREF _Toc363536085 �13��

4.2.2 Input fields	� GOTOBUTTON _Toc363536086 � PAGEREF _Toc363536086 �13��

4.2.2.1 Beam position and detector distance	� GOTOBUTTON _Toc363536087 � PAGEREF _Toc363536087 �14��

4.2.2.2 Image search area and limits	� GOTOBUTTON _Toc363536088 � PAGEREF _Toc363536088 �14��

4.2.2.3 Mask scanning parameters	� GOTOBUTTON _Toc363536089 � PAGEREF _Toc363536089 �14��

4.2.2.4 Bad pixel criteria	� GOTOBUTTON _Toc363536090 � PAGEREF _Toc363536090 �16��

4.2.2.5 Non-uniformity reference algorithm	� GOTOBUTTON _Toc363536091 � PAGEREF _Toc363536091 �16��

4.2.2.6 Filenames	� GOTOBUTTON _Toc363536092 � PAGEREF _Toc363536092 �17��

4.2.3 The image display	� GOTOBUTTON _Toc363536093 � PAGEREF _Toc363536093 �18��

4.2.3.1 Display Min, Max	� GOTOBUTTON _Toc363536094 � PAGEREF _Toc363536094 �18��

4.2.3.2 Zoom factor	� GOTOBUTTON _Toc363536095 � PAGEREF _Toc363536095 �18��

4.2.3.3 Display output	� GOTOBUTTON _Toc363536096 � PAGEREF _Toc363536096 �18��

4.3 Save file commands	� GOTOBUTTON _Toc363536097 � PAGEREF _Toc363536097 �19��

4.4 Command line options	� GOTOBUTTON _Toc363536098 � PAGEREF _Toc363536098 �21��

5 Output	� GOTOBUTTON _Toc363536099 � PAGEREF _Toc363536099 �21��

6 Errors	� GOTOBUTTON _Toc363536100 � PAGEREF _Toc363536100 �21��

7 Accessory programs	� GOTOBUTTON _Toc363536101 � PAGEREF _Toc363536101 �22��

7.1 dtdecompose	� GOTOBUTTON _Toc363536102 � PAGEREF _Toc363536102 �22��

7.2 dtcompose	� GOTOBUTTON _Toc363536103 � PAGEREF _Toc363536103 �23��

7.3 make_marks	� GOTOBUTTON _Toc363536104 � PAGEREF _Toc363536104 �24��

7.4 multi	� GOTOBUTTON _Toc363536105 � PAGEREF _Toc363536105 �24��

7.5 make_interpolation	� GOTOBUTTON _Toc363536106 � PAGEREF _Toc363536106 �25��

7.6 dtaverage	� GOTOBUTTON _Toc363536107 � PAGEREF _Toc363536107 �27��

8 Example: Multiple module detector calibration	� GOTOBUTTON _Toc363536108 � PAGEREF _Toc363536108 �28��

8.1 Input save files	� GOTOBUTTON _Toc363536109 � PAGEREF _Toc363536109 �28��

8.1.2 Single module spatial distortion savefile	� GOTOBUTTON _Toc363536110 � PAGEREF _Toc363536110 �29��

8.1.2 Multiple module non-uniformity of response savefile	� GOTOBUTTON _Toc363536111 � PAGEREF _Toc363536111 �30��

8.1.3 Input C-shell script calibrate.com	� GOTOBUTTON _Toc363536112 � PAGEREF _Toc363536112 �32��

8.1.4 Image files	� GOTOBUTTON _Toc363536113 � PAGEREF _Toc363536113 �34��

8.2 Output	� GOTOBUTTON _Toc363536114 � PAGEREF _Toc363536114 �34��

9 File formats	� GOTOBUTTON _Toc363536115 � PAGEREF _Toc363536115 �42��

9.1 Image files	� GOTOBUTTON _Toc363536116 � PAGEREF _Toc363536116 �42��

9.1.1 Image header format	� GOTOBUTTON _Toc363536117 � PAGEREF _Toc363536117 �43��

9.1.2 Image data format	� GOTOBUTTON _Toc363536118 � PAGEREF _Toc363536118 �44��

9.2 Bad pixel list file	� GOTOBUTTON _Toc363536119 � PAGEREF _Toc363536119 �45��

9.3 Calibration files	� GOTOBUTTON _Toc363536120 � PAGEREF _Toc363536120 �45��

9.3.1 The non-uniformity file	� GOTOBUTTON _Toc363536121 � PAGEREF _Toc363536121 �45��

9.3.2 The spatial distortion fileset	� GOTOBUTTON _Toc363536122 � PAGEREF _Toc363536122 �46��

Appendix A Installation	� GOTOBUTTON _Toc363536123 � PAGEREF _Toc363536123 �47��

Appendix B Resource file	� GOTOBUTTON _Toc363536124 � PAGEREF _Toc363536124 �48��

�

�
1 Scope and Purpose� TC "1 Scope and Purpose" \f C \l "1" �

	This document describes how to use the calibrate software in order to calibrate an area detector for spatial distortion and non-uniformity of response. The calibrate software was originally developed by Dr. Marty Stanton at Brandeis University. The calibrate software produces files that are used by the d*TREK program to convert from millimeters to pixels, from pixels to millimeters, to flag bad pixels, and to correct pixel intensities for variations in response.

	Appendix A describes how to install the calibrate software on a computer system.

1.1. References� TC "1.1. References" \f C \l "2" �

Stanton, M. (1992) Correcting Spatial Distortions and Nonuniform Response in Area Detectors. J. Appl. Cryst. 25, 549-558.

Thomas, D.J. (1989) Calibrating an area detector diffractometer: imaging geometry. 	Proc. R. Soc. Lond. A425, 129-167.

Thomas, D.J. (1989) Calibrating an area detector diffractometer: integral response. Proc. 	R. Soc. Lond. A428, 181-214.

Kabsch, W. (1988) Evaluation of Single-Crystal X-ray Diffraction Data from a Position-	Sensitive Detector. J. Appl. Cryst. 21, 916-924.

NCSA Mosaic User Guide.

1.2 Definitions and Abbreviations� TC "1.2 Definitions and Abbreviations" \f C \l "2" �

SIT	silicon-intensified target

CCD	charge-coupled device

CID	charge-injection device

ADC	analog-to-digital converter

DC	direct current

px	pixel or picture element

mm	millimeters

stdin	standard input, SYS$INPUT or Fortran unit 5. Most programs get their input from this device, file or stream.

stdout	standard output, SYS$OUTPUT or Fortran unit 6. Most programs write text output to this device, file or stream.

stderr	standard error, SYS$ERROR. Most programs write error messages to this device, file or stream.

�
2 Background � TC "2 Background" \f C \l "1" �

	Electronic position-sensitive detectors generally geometrically distort the detected signal such as a diffraction pattern. The components of these detectors -- phosphor, fiber-optic tapers, lens, image intensifiers, SIT tubes and CCDs -- each introduces potential problems that are difficult to avoid when designing and building detectors. Software is used to correct for the deficiencies in images introduced by the hardware. The deficiencies are spatial distortions, pixel inhomogeneity of response and defective pixels.

	Spatial distortions need to be corrected so that pixels can be accurately mapped to millimeters and the reverse. These mapping functions predict where Bragg reflections will fall on the detector and the millimeter coordinates of peaks found in images. Also the correction for inhomogeneity of response needs to accurately determine the position and area of each pixel. In the calibrate program, it is assumed that the spatial distortion of the detector does not vary between the time of calibration and the end of an experiment.

	The inhomogeneity or non-uniformity of response needs correction so that counts in individual pixels can be correlated with the incoming signal (photons). Response might vary over the detector because of variations in phosphor thickness, fiber-optic taper properties, pixel area, fixed-pattern noise, and other electronic noise.

	Defective pixels arise for a number of reasons. For our purposes, a defective pixel is one that does not give a count proportional to the photons registered. Some pixels are ìdarkî, that is they always give zero or very low counts. Other pixels are always ìbrightî; they give high counts independent of the photons detected. Still other pixels can give random counts. Defective pixels must be flagged and not used by a data processing program.

	A saturated pixel is one where the counts are beyond the range where they are proportional to the detected photons. Each detector can exhibit both local and global saturations. The data processing software needs to know how to detect and treat Bragg reflections with saturated pixels.

	Finally, for most diffraction data processing software, the origin of the detector millimeter coordinate system is where the primary beam hits the detector when it is normal to the beam.

	For further description of calibration, consult the references listed above, especially Stanton et al. 1992.

3 Input images � TC "3 Input images" \f C \l "1" �

	These calibrate programs require several images as inputs that must be created before running calibrate. These images are:

1. A dark or background image

2. A mask image

3. A flood image

4. An image to determine the position of the primary beam.

Image file formats are discussed in section 9. Images are not created by the calibrate program. They are created by a data acquistion program such as dtcollect. Furthermore, for best results, the input images should be averages of several images. You can use the dtdisplay and dtaverage (see section 7.6) programs to average images.

3.1 Dark or background images� TC "3.1 Dark or background images" \f C \l "2" �

	A dark or background image is used to subtract out the DC offset of the ADC, readout noise, other fixed-pattern noise and dark current. This image is taken with the source shutter closed. The exposure time should be long enough to give good statistics. Since dark current varies with temperature, the temperature should be held constant during calibration and during a data collection experiment. Readout noise can often be measured by making an image with the shutter closed for a zero exposure time. These images will be subtracted from data images and from the other calibration images to yield images with only X-ray signal in them.

3.2 Mask image� TC "3.2 Mask image" \f C \l "2" �

	Calibrate requires a mask image created by placing a metal plate with a square lattice of holes in it over the front of the detector and exposing the detector to a flood field of X-rays. The holes must be evenly spaced in both directions over the entire active area of the detector. The mask should be situated so that the square lattice is aligned with the pixel directions. Calibrate has been used successfully with masks that have had spacing between the holes from 1 mm to 5 mm. For a multimodule detector, the mask should have a blocked hole every 50 mm. The position of the blocked hole is used to reference the spatial distortion of an individual module to the entire multimodule. Each individual module needs such a reference or fiducial mark. Calibrate will search the mask image for peaks, so expose the image long enough to allow for effective and precise peak searching. A few missing or blocked holes are allowed in the mask.

3.3 Flood image� TC "3.3. Flood image" \f C \l "2" �

	The flood image is taken without the mask in place. All active pixels in the detector need to be exposed to X-rays. The detector should be in the same position as during diffraction experiment. The exposure time of the flood image should be long enough to obtain accurate Poissonian counting statistics without saturating the detector. Remember that the dark current accumulates during the exposure, too.

	A flood field can be generated in several ways. One method uses a radioactive 55Fe source positioned at the sample position to create an isotropic flood field of X-ray photons. Some problems with this method are the photons are neither numerous enough to give good statistics for a reasonable exposure time nor are they at the same energy of the photons in the diffraction experiment. Another method exposes an amorphous material (metal foil, powder or concentrated solution) at the sample position. The sample fluoresces creating a flood field of X-rays. This field is not isotropic and needs to be separately characterized for use by the calibrate software. An appropriate choice of sample can yield a flood field of the proper energy photons. Since the source is used to create the flood field, the detector must be swung out of the shadow of the beam stop, so that the flood field hits all active pixels. Or the beamstop must remain in the same place for the actual diffraction experiment, as the pixels behind the beamstop will not be calibrated. A final method for generating a flood field is to remove all the collimation of the source and to position the detector far enough away from the source so that it sees a flood field. This method has the problems of absorption and safety.

3.4 An image to determine the position of the primary beam� TC "3.4

An image to determine the position of the primary beam" \f C \l "2" �

	This image will determine the initial origin of reciprocal space on the detector. This origin is refined by the data processing software, so it need not be super accurate. Often the beam position can be selected manually from a diffraction image by looking at the beam stop shadow. However, many problems in data processing can be traced back to an inaccurate primary beam position. To create this image, the X-rays should be highly attenuated, the beam stop removed and a very short exposure made. Be sure to replace the beam stop and check its position after making such images.

4 Running calibrate� TC "4 Running calibrate" \f C \l "1" �

	After calibrate has been properly installed, it may be run interactively from a command line or from a script file (command procedure). In either case, calibrate requires an X Window display to run. Also, for the help command to work, NCSA Mosaic must be installed and the command to run it made known to calibrate (see Appendix A). Enter ëcalibrateí on the command line or select ëcalibrate...í from the command menu. The following liat shows the steps to take:

1. Create Dark, Mask and Flood images

2. Run calibrate

3. Enter Beam Position

4. Enter Crystal-Detector Distance

5. Review image search limits

6. Review masking scanning parameters

7. Review bad pixel parameters, read in bad pixel list if necessary

8. Select reference image criteria

9. Enter image filenames

10. Calibrate - Go Calibrate

All steps will need to be taken when calibrating a detector for the first time. Subsequent calibrations can make use of a save file, so that steps 5,6,7,8,9 can be skipped.

4.1 Calibrate input� TC "4.1 Calibrate input" \f C \l "2" �

	Calibrate can get input from the mouse, save files on disk, and/or the command line. If appropriate input comes from the command line, then the mouse is not used, but the display is stilled required and used. When calibrate first starts up, it tries to read input from the following files in order:

	

	1a. A file defined by the environment variable or logical name CALSAV. This is not a file named CALSAV; it must be an environment variable or logical name.

-or-

	1b. A file named CALIBRATE_SITE if it exists (this may be the file itself, or one defined as this environment variable or logical name),

	then a file named CALIBRATE_USER if it exists (this may be the file itself, or one defined as this environment variable or logical name).

-then-

	2. Files specified by any -init filename option on the command line. These are read in the order they appear on the command line after the files in 1 are (possibly) read in.

The format of the save file is discussed in section 4.2 below.

	After reading in any save or initialization files, a calibrate window appears on the display and mouse input is accepted (unless -autoexit is specified on the command line).

4.2 Mouse input and the display� TC "4.2 Mouse input and the display" \f C \l "2" �

	The calibrate window displays a menubar across the top, parameter input fields along the left and bottom sides, a drawing area on the left for images, and a small zoomed area as show below:

�

If the display does not appear as shown, check that the X Window server has accessed the calibrate resource file (see Appendix B).

4.2.1 The menubar� TC "4.2.1 The menubar" \f C \l "3" �

	The menubar has four buttons labeled File, View, Calibrate, and Help. All except the Help button have associated cascading menus.

4.2.1.1 File menu� TC "4.2.1.1 File menu" \f C \l "4" �

	The File menu is used to read files, write files and to exit from calibrate. Select Read to read in files used by calibrate. A pullright menu appears with choices for the file to read in. The choices are:

	

	Mask

	Flood

	Dark

	Reference

	DISTOR

	NONUNF

Select the type of file to read. Select the name of the file to read in the file selection dialog box that appears.

	To write a file, select Write from the File menu. Proceed as for reading files.

	To read in a save or script file, select Read Save... from the File menu.

To read in a bad pixel list file, select Read Bad Pixel List... from the File menu. The format of this file is described in section 4.

To write the current values of all calibrate parameters to a file, select Write Save... from the File menu. The save file is an ASCII file that can be edited (see section 4.2).

	To exit from calibrate, select Exit from the File menu.

4.2.1.2 View menu� TC "4.2.1.2 View menu" \f C \l "4" �

	The View menu is used to select the image displayed in the drawing area along with any bad pixels. The possible choices are

	Mask image

	Dark image

	Flood image

	Reference image

	DISTOR files (they are in the form of images)

	Non-uniformity images

	Bad pixels (not really an image, but can be viewed)

	Search limits

Only images that have been read in or calculated by calibrate can be viewed. If a choice is inactivated, this means that calibrate does not have the image available. When an image is selected, it appears in the drawing area.

4.2.1.3 Calibrate menu� TC "4.2.1.3 Calibrate menu" \f C \l "4" �

	The Calibrate menu is used to perform the actual spatial distortion and non-uniformity of response calibration. The current values of all input parameters are used during these tasks, so they should be set properly beforehand. The selections in the Calibrate menu are:

Go Calibrate	Performs all steps to write spatial distortion and non-uniformity of response files. This is a Go DISTOR and Go Nonunf combined into a single command.

Go DISTOR	Performs the entire sequence of steps to calibrate the detector for spatial distortion. A mask image is read in and scanned for peaks. The pixel coordinates of the peaks are correlated with the expected millimeter coordinates of the holes in the mask to yield tables that can be used to convert between pixels and millimeters and vice versa.

Scan Mask	Scans the mask image for peaks, but does not calculate the spatial distortion. This is used to check the peak searching parameters.

Calculate DISTOR	Calculates the spatial distortion as described under Go DISTOR above. The interpolation files are written if this is successful.

Go NONUNF	Performs the entire sequence of steps to calibrate the detector for non-uniformity of response. The spatial distortion must have been previously calibrated. Typically, a flood image and a dark image are read in. Bad pixels are flagged in both images. The dark image is subtracted from the flood image. A reference image is calculated, then distorted to match the actual spatial distortion of the detector. The ratio of the dark-subtracted flood image to this distorted reference image is the non-uniformity of response information.

Find bad pixels	Bad pixels in the flood or dark images are found. Any pixel with a value below Min Pixel and above Max Pixel is set as bad. Any pixel with a value more than Std. Deviation away from the average of its neighbors is set as bad. See section 4.2.2.4.

Flood - Dark		The dark image is subtracted from the flood image.

Calculate reference	The reference image is calculated. Once calculated it can be viewed by selecting it in the View menu.

Distort reference	The reference image is distorted to match the available spatial distortion information.

Calculate NONUNF	The flood image is scaled to the reference image.

MASK - DARK	The Dark image is subtraced from the mask image and the result is placed in the mask image.

Correct MASK NONUNF

	The mask image is corrected for non-uniformity of response and the result is placed in the mask image.

Correct MASK DISTOR

	The Mask image is corrected for spatial distortion and the result is placed in the Mask image. This is a good check of the algorithm.

4.2.1.4 Help button� TC "4.2.1.4 Help button" \f C \l "4" �

	The Help button activates the help command specified in the calibrate resource file. Usually this command is set to be NCSA Mosaic that is then used to view a hypertext help document.

4.2.2 Input fields� TC "4.2.2 Input fields" \f C \l "3" �

	The left-side of the display contains many text entry fields to display and changes the current values of parameters that are used by the calibration program. These values may be initialized or changed by reading in a save file, either at program startup or subsequently with the Read Save... command in the File menu. To change a value, simply select the field and enter a new value followed by the Enter key. The input fields are grouped together by separator bars.

4.2.2.1 Beam position and detector distance� TC "4.2.2.1 Beam position and detector distance" \f C \l "4" �

	These must be set for every calibration, so they are at the top.

Beam position	The pixel coordinates of the primary beam when the detector is positioned at a swing angle of 0. The input is given as the fast pixel coordinates first, then the slow pixel coordinates second, in the input images. The X and Y refer to these fast and slow directions, not to the physical laboratory coordinate system.

Crystal to detector distance

			The crystal to detector distance in millimeters.

4.2.2.2 Image search area and limits� TC "4.2.2.2 Image search area and limits" \f C \l "4" �

Horizontal (X) Search Limits

	The minimum and maximum pixel coordinate in the horizontal direction as displayed by calibrate.

Vertical (Y) Search Limits

	The minimum and maximum pixel coordinate in the vertical direction as displayed by calibrate.

Search Center	The center pixel of a circle

Search Radius	The radius in pixels of a circle, only pixels inside the circle are considered in subsequent calibration steps.

4.2.2.3 Mask scanning parameters� TC "4.2.2.3 Mask scanning parameters" \f C \l "4" �

Center Peak Position

	The center peak position in the mask in pixels. The mask is scanned in a special way starting from this peak position. The mask is scanned first in the horizontal direction for peaks, then in the vertical direction. In both cases, peaks are found by searching outward from known peaks and applying a crude fit of the distortion from the known peaks. Thus the algorithm needs to start with a good peak and that is the purpose of this entry.

Distance Between Peaks

	The distance between peaks in pixels. When searching for peaks, the next peak is this many pixels from the previous peak, modified by any known distortion

Peak Size		The size of peaks in pixels.

Number of Background Pixels

	The number of pixels used to calculate the background around a peak during the peak centroid determination.

Max. Centroid-Pred. Distance

	Mask peaks whose centroids are more than these many pixels away from the expected centers are discarded.

Max. Centroid-Max Value Dist.

	Mask peaks whose centroids are more than these many pixels from the maximum value in the peak are ill-shaped and discarded.

Min. Integrated Peak Intensity

	A peak with an integrated intensity below this value is discarded.

Mask Angle	The angle the mask makes relative to the pixel coordinate system of the detector.

Bad Peaks Allowed	Scanning along a line of peaks stops when this number of bad or discarded peaks is reach. It is assumed that the edge of the image, the mask or the active area of the detector has been reached.

Radial Distortion Yes|No

	Select whether the detector exhibits radial distortion. Normally choose No.

Pixel Size (mm)	Set the nominal pixel size near the center of the detector in millimeters. Normally set this to 0.0, so that calibrate determines this value for itself.

Mask Spacing (mm)	The spacing between mask holes in millimeters. The holes must be spaced evenly in two orthogonal directions.

4.2.2.4 Bad pixel criteria� TC "4.2.2.4 Bad pixel criteria" \f C \l "4" �

Min, Max Pixel Values

	This text field takes 6 values separated by commas. The values are (1) Min Pixel in Dark, (2) Max Pixel in Dark, (3) Min Pixel in Flood, (4) Max Pixel in Flood, (5) Min Pixel (or truncate value) in Flood-Dark and (6) unused at present. Pixels in the dark image or in the flood image below the Min value and above the Max value will be flagged as bad. Any pixel in a dark-subtracted image below the Min Pixel in Flood-Dark. is set to the Min Pixel in Flood-Dark value.

Max Pixel Std. Deviation

	Pixels which deviation by more than this number of standard deviations from the neighborhood average (a neighborhood is 32 x 32 pixels)

Dark Subtract Scale Factor

	The dark image is multiplied by this factor before subtracting from the flood and/or mask image.

Dark Subtract Constant

	This constant value is added to the dark-subtracted flood or mask image.

4.2.2.5 Non-uniformity reference algorithm� TC "4.2.2.5 Non-uniformity reference algorithm" \f C \l "4" �

Reference Determined from File | Calculated

	If File is selected, then a reference image calculated elsewhere is used to scale the dark-subtracted flood field and calculate the non-uniformity of response.

	If Calculated is selected, then a simple reference field based on an isotropic point source is calculated and used to scale the dark-subtracted flood field.

Distort Reference Based On: Int. Table | Radial | None

The reference image is distorted based on the

	Interpolation Tables,

	A radial distortion,

	or None

before scaling to the dark-subtracted flood field. In general, chose Int. Table.

4.2.2.6 Filenames� TC "4.2.2.6 Filenames" \f C \l "4" �

	The current names of all files used by calibrate are displayed. This is no guarantee that these files exist, since calibrate tries to read or write them only as needed. The filenames are listed for the following files:

	Mask Image			The filename of the mask image

	Dark Image			The filename of the dark image

	Flood Image			The filename of the flood image

	Reference Image		The filename of the reference image

	Interpolation Table Basename

					The basename of the interpolation table fileset. There are five files in the interpolation table fileset:

	basename.calpar	Calibration parameters

	basename.x_int	Coded Xmm for a pixel

	basename.y_int	Coded Ymm for a pixel

	basename.inv_x_int	X pixel for a coded Xmm,Ymm

	basename.inv_y_int	Y pixel for a coded Xmm,Ymm

Non-uniformity of response

				The filename of the non-uniformity of response image

Bad Pixel			The filename of the bad pixel image

4.2.3 The image display� TC "4.2.3 The image display" \f C \l "3" �

	The drawing area on the right displays images selected by the View menu or images being processed by the Calibrate menu. The area is only 512 by 512 pixels, so for larger images, entire rows and columns of pixels are skipped in order to fit the entire image into the area. The images are displayed as a gray-scale if the X Window display is capable. The image search area and limits can also be displayed. Bad pixels are displayed with the following color code:

	Blue		Outside search limits (section 4.1.2.2)

	Red		Outside allowed Min, Max pixel value limit (section 4.1.2.3)

 	Yellow		Exceeded maximum standard deviation

4.2.3.1 Display Min, Max� TC "4.2.3.1 Display Min, Max " \f C \l "4" �

	These set how the pixel values are mapped to the gray-scale of the image display. Pixels with values below Display Min are displayed as black, while those with values above Display Max are displayed as white. Pixels with intermediate values are given a corresponding gray color.

4.2.3.2 Zoom factor� TC "4.2.3.2 Zoom factor" \f C \l "4" �

	A small zoom area of 128x128 pixels displays a zoomed area of the parent image. Select the zoomed area with the mouse. The selected area is zoomed by the factor entered in the Zoom factor field. Pixels may be selected in this area, just as in the large drawing area.

4.2.3.3 Display output� TC "4.2.3.3 Display output" \f C \l "4" �

	When a pixel in the image is selected with the mouse, the following information is calculated and displayed below the image:

Cursor Position	Coordinate of the selected pixel as a FAST, SLOW pair. The first pixel in the image has coordinate 1,1 and the second 2, 1.

Pixel Value	Value of the selected pixel. Use this to help evaluate the proper choice of Min and Max Pixel Value 4.2.2.4.

Peak Centroid	The center of gravity of a selected peak.

Peak Intensity	The integrated peak intensity. Use this to evaluate the proper choice of Min. Peak Intens. 4.2.2.3.

Program status	A single line giving the current status including any error message from calibrate.

4.3 Save file commands� TC "4.3 Save file commands" \f C \l "2" �

	A calibrate save file is an editable ASCII file that contains one command followed by parameters per line. A save file with the current values of calibrate parameters can be created by clicking on ëFile Write Save...í with the mouse. The save file must end with the word exit. Commands in the save file are case insensitive as are filenames on VMS platforms (but filenames are case-sensitive on Unix platforms). A single apostrophe just prevents the parser from interpret the following character as special. The commands in the save file map to entry fields described earlier. The *_pattern and *_dirname commands are used to save the results of the file selection dialog boxes used by the File menu. A radio button is selected as on with a value of 1 and is off with a value of 0:

For example:

 flood_radial 0

 flood_geometry 1

 flood_film 0

 flood_interpolate 1

mean that the Radial Distortion is set to No (flood_radial 0); Reference Determined From is set to Calculated (flood_geometry 1; flood_film 0); and the Distort Reference Based On is set to Int. Table (flood_interpolate 1).

 nonunf_filename 'nonunf

 nonunf_pattern '*nonunf*

 nonunf_dirname './

 distor_filename 'jim_mask

 distor_pattern '*distor*

 distor_dirname '/rxdat2/people/raxis/jwp/gold/

 reference_filename 'reference

 reference_pattern '*reference*

 reference_dirname './

 flood_filename '/jwp/gold/nflood.ds

 flood_pattern '*flood*

 flood_dirname '/jwp/gold/

 dark_filename '/jwp/gold/dark.img

 dark_pattern '*dark*

 dark_dirname '/jwp/gold/

 mask_filename 'mask

 mask_pattern '*.mad

 mask_dirname './

 save_filename 'jim4.sav�.sav

 save_pattern '*.sav*

 save_dirname '/jwp/gold/

 badpix_filename 'BADPIX

 badpix_pattern '*BADPIX*

 badpix_dirname './

 flood_radial 0

 flood_interpolate 1

 flood_geometry 1

 flood_film 0

 darksub_const 0.0000000E+00

 darksub_scale 1.0000000E+00

 pixel_sd 40.00000

 max_pixel 65534

 min_pixel 4000

 radial_distortion 0

 bad_peaks 2

 mask_angle 0.0000000E+00

 min_peak 30000

 cent_to_maxval 2.000000

 cent_to_pred 5.000000

 background_pixels 25

 peak_size 9

 peak_distance 19.00000

 center_peak 1536 1536

 search_radius 2200.000

 search_center 1536 1536

 vertical_limits 32 3050

 horizontal_limits 32 3050

 xtod_distance 150.0000

 masktod_distance 0.0000000E+00

 beam_position 1546.60 1490.500

 mask_spacing 1.000000

 pixel_size 5.0000001E-02

 display_min 0 0 0 0 0 0 0 0 0

 display_max 20000 30000 10000 10000 15000 100000 100000 100000 100000

 edges 0

 dump_mode 0

 dump_filename 'DMPFIL

 exit

4.4 Command line options� TC "4.4 Command line options" \f C \l "2" �

	The options below may be placed on the calibrate command line. Judicious choice of options allows calibrate to operate in the absence of mouse input. Command line options are used when in calibrate script files.

-beamx fpx		The fast pixel coordinate of the beam position.

-beamy spx		The slow pixel coordinate of the beam position.

-dist d			The sample to detector distance in millimeters.

-init file		An initialization file (save file) is read in when this 	command line argument is processed. Be careful, this will

		override any previous settings including those made by a 	previous command line argument.

 -dump file		Turn on dump mode and set output dump filename.

-flood file		Sets input flood filename.

-mask file		Sets input mask filename.

-dark file		Sets input dark filename.

-distor file		Sets output spatial distortion fileset basename.

-nonunf file		Sets output nonuniformity filename.

-badpix file		Sets input bad pixel list filename.

-refer file		Sets input reference filename.

-godistor			Run the Calibrate Go DISTOR command automatically.

-gononunf 			Run the Calibrate Go NONUNF command automatically.

-autoexit		Automatically exit before getting mouse input. This is only 	useful when combined with -godistor or -gononunf.

-help			Print command line help text.

5 Output� TC "5 Output" \f C \l "1" �

	Calibrate creates a spatial distortion calibrate fileset that consists of five files and a non-uniformity of response file. These files can be used in the MADNES program, the d*TREK program and other programs to correct images for spatial distortion and non-uniformity of response.

6 Errors� TC "6 Errors" \f C \l "1" �

	Most errors can be traced to unable to read the input files. The Program Status field will display an error message when a file cannot be read.

7 Accessory programs� TC "7 Accessory programs" \f C \l "1" �

	Although calibrate is the only program needed to calibrate a single module detector, additional programs and scripts are required to calibrate a multiple module detector. These are:

	dtdecompose	Decompose (extract) subimages from an image

	dtcompose		Compose (build) an image from subimages

	make_marks		Mark single modules in a large multimodule image

multi		Read a calibrate dump file and determine the pixel position 	of the fiducial blocked hole by interpolating from the nearest 	neighbor unblocked holes.

	make_interpolation	Combine interpolation tables from single module 			calibrations into a multimodule calibration table.

7.1 dtdecompose� TC "7.1 dtdecompose" \f C \l "2" �

	dtdecompose reads from stdin the filename of the input image to decompose. It reads this image into memory. Next it reads image filenames and the origin and extent (in pixels) of the rectangle of pixels in the input image to be copied into the output image. If the requested rectangle is completely contained within the input image, dtdecompose creates the new image and writes it out. Otherwise it prints an error message and exits. New images have the same Data_type (short int, long int, etc) as the input image. dtdecompose continues to process input until there is an end-of-file on stdin, whereupon it exits.

Note:	The size of the input image is only limited by the system resources, not the software.

Note:	The first pixel in the image has coordinates 0,0. All coordinate pairs are expressed as the fastest varying pixel coordinate first, then the slowest varying pixel coordinate. In other words, pixel 1,0 is the second pixel in the file; 2,0 the third and so on.

Example:	Extract nine non-overlapping images each 1024 x 1024 pixels from a 3072 x 3072 image.

% dtdecompose <<EOF

big.img

 0 0 1024 1024 sub1.img

1024 0 1024 1024 sub2.img

2048 0 1024 1024 sub3.img

 0 1024 1024 1024 sub4.img

1024 1024 1024 1024 sub5.img

2048 1024 1024 1024 sub6.img

 0 2048 1024 1024 sub7.img

1024 2048 1024 1024 sub8.img

2048 2048 1024 1024 sub9.img

EOF

7.2 dtcompose� TC "7.2 dtcompose" \f C \l "2" �

	dtcompose is the functional opposite of dtdecompose. It reads from stdin the filename and dimensions of an image to create. Next it reads additional image filenames and their position (in pixels) in the new image. The pixel values of these additional images

are placed in the composed image if the image has large enough dimensions to contain it. Otherwise an error is reported and dtcompose exits The new image has the same Data_type as the first image placed in it. The Data_types of the subsequent images are converted to this Data_type if necessary. When there is an end-of-file on stdin, the composed image is written to the filename given at the beginning. Since each subsequent image is placed in the composed image in the order given, it is possible to replace values in the composed image that came from a previous image file. Information about the progress of dtcompose is written to stderr.

Note:	The size of the output image is only limited by the system resources, not the software. Any pixels in the output image that are not replaced by input images will be given the value 0.

Note:	The first pixel in the image has coordinates 0,0. All coordinate pairs are expressed as the fastest varying pixel coordinate first, then the slowest varying pixel coordinate. In other words, pixel 1,0 is the second pixel in the file; 2,0 the third and so on.

Example:	Compose a 3072 x 3072 image from nine 1024 x 1024 images:

% dtcompose << EOF

big.img 3072 3072

sub1.img 0 0

sub2.img 1024 0

sub3.img 2048 0

sub4.img 0 1024

sub5.img 1024 1024

sub6.img 2048 1024

sub7.img 0 2048

sub8.img 1024 2048

sub9.img 2048 2048

EOF

7.3 make_marks� TC "7.3 make_marks" \f C \l "2" �

	Make_marks reads a 3072x3072 flood field image, minimum pixel value and the name of a so-called output ìmarkî image from stdin. It creates a new 3072x3072 mark image and writes it to disk. The mark image is used by the make_interpolation program. The mark image constructed by make_marks has pixel values 1000, 2000, 3000, ..., 9000 in nine 1024x1024 evenly spaced areas of the image. Any pixel value that is below the input minimum pixel value is given a value of 0. Thus, the mark image contains only pixel values of 0, 1000, ..., 9000.

Example:

% make_marks <<EOF

flood.img

10000

mark.img

EOF

7.4 multi� TC "7.4 multi" \f C \l "2" �

	Multi reads from a file DMPFIL (actual name or environment variable) or if it does not exist then from stdin the dump output created by the single module calibrate Go DISTOR command. The dump file lists the positions of all the mask holes (peaks in the mask image) found and the expected positions of mask holes that were not found. Multi then interpolates the position of the missing holes from the positions of its immediate neighbors and writes this position to stdout preceded by the text ìCorrect position." This becomes part of the input to the make_interpolation program (section 7.5).

Example: Run multi on the dump file output of calibrate:

% multi <nmask1.dmp >multi.log

% cat multi.log

 Trying : DMPFIL

 Done reading dump file

 Min, max xpeak 76 124

 Min, max ypeak 76 124

 Peak 99 97 is missing

 Observed position 491.2100 448.8500

 Correct position 492.5512 449.4068

The dump file looks like in part:

! Searching for center point at : 512.0000 512.0000

 Peak 100 100 511.53 506.82 210238.0 1

 ! Searching for right point at :

 Peak 101 100 530.74 506.99 215126.0 1

...

 Peak 124 100 993.96 510.20 242448.0 1

 Peak 125 100 1021.00 511.12 187.0 14

 ! Peak to far from maximum value in box

 ! Peak moved to far from predicted position

 ! Peak intensity below minimum

 ! Predicted position at: 1014.383 511.3594

 Peak 99 100 492.26 506.89 231131.0 1

 Peak 98 100 472.52 507.19 212596.0 1

...

 Peak 99 97 491.21 448.85 349.0 8

 ! Peak intensity below minimum

 ! Predicted position at: 491.4299 449.3658

 Peak 99 96 491.81 429.78 207573.0 1

 Peak 99 95 491.70 410.42 204774.0 1

 ! Peak intensity below minimum

 ! Predicted position at: 398.0293 1012.762

 Peak 94 99 395.54 487.80 232009.0 1

 Peak 94 98 395.47 468.45 217801.0 1

 Peak 94 97 395.36 449.05 206068.0 1

 Peak 94 96 395.27 429.72 217458.0 1

 Peak 94 95 395.17 410.30 202119.0 1

....

7.5 make_interpolation� TC "7.5 make_interpolation" \f C \l "2" �

	Make_interpolation reads 9 single module spatial distortion calibration filesets and combines them into a multiple module spatial distortion fileset. Presently, the single modules must be dimensioned 1024 x 1024 pixels and the multiple module must be composed of a 3 x 3 array of these single modules.

Input on stdin consists of:

1.	A template basename for the single module filesets. The character # in the template will be replaced with the characters 1, 2, ..., 9 in order to derive the spatial distortion fileset basename for each input single module. For example, if the template basename is ìdistor#î, then the files read in are:

 		distor1.calpar

		distor1.x_int

		distor1.y_int

		distor1.inv_x_int

		distor1.inv_y_int

		distor2.calpar

		...

		distor9.inv_y_int

2. 	The name of the so-called ìmarkî image file created by make_marks (section 7.3)

3.	The word ìyesî to write out a filled image file. This file is not used further.

4.	The name of the filled image file.

5.	The basename of the multiple module spatial distortion fileset. Make_interpolation will create five output files beginning with this basename: *.calpar, *.x_int, *.y_int, *.inv_x_int, *.inv_y_int.

6.	The fast pixel coordinate of the primary beam position.

7.	The slow pixel coordinate of the primary beam position.

	In addition to the input on stdin, a file named MISSING (actual name or environment variable) is read with 9 lines from the multi output that contain the positions of the single module fiducials. The fiducials are assumed to be 50 mm apart. The MISSING file can be created with the following Unix C-shell scripts assuming the calibrate dump files are named nmask1.dmp,..., nmask9.dmp:

% touch multi.log

% multi < nmask1.dmp >> multi.log

 ...

% multi < nmask9.dmp >> multi.log

% grep Correct multi.log > MISSING

WARNING: If the mask contains more blocked holes then just the expected fiducials, then MISSING must be edited, so that it contains only the fiducial positions.

7.6 dtaverage� TC "7.6 dtaverage" \f C \l "2" �

	Dtaverage averages a scan or series of images on a pixel by pixel basis. It rejects outliers in the averaging process and saves rejected pixel positions in a separate image file. Its main purpose is to create the best possible averaged images for input to calibrate. To use dtaverage, first collect the images you wish to average with dtcollect. Next use dtdisplay to compute initial average and standard deviation images. The command syntax for dtaverage is:

dtaverage [-scan scanfile] [options ...]

Option		 	Description

-scan sName		File sName (no default) has the scan definition.

 -template sInTemplate

	Input image file template. If sInTemplate contains ? be sure to enclose it in quotes. Default: image.???

-start nSeqStart	Sequence start number. Default: 1.

-inc nSeqIncr 	Sequence increment. Default: 1.

-num nNumImages	Number of images to process. Default: 1000.

-avg sAvgFile	Input averaged image file name. Default is formed from the input file template by stripping off any leading directory and appending av to the name.

-sd sSDFile	Input standard deviation image file name. Default is formed from the input file template by stripping off any leading directory and appending sd to the name.

-sigma fSigma	Pixels which differ by more than fSigma from the average value will be excluded from the calculation of the new average and standard deviation images. Default 3.

-maxsd fMaxSD	Any pixel input standard deviation larger than fMaxSD will be set to fMaxSD. Default 1000000.

-minsd fMinSD	Any pixel input standard deviation smaller than fMinSD will be set to fMinSD. Default 1.

-min fMin	Pixels with values below fMin will be excluded from the calculation of the new average and standard deviation images.

	Default -1000000.

-max fMax	Pixels with values above fMax will be excluded from the calculation of the new average and standard deviation images. Default 1000000.

-out sOutFile	Output averaged image file name. Default is formed from the input file template by stripping off any leading directory and appending dtav to the name.

-outsd sOutSDFile	Output standard deviation image file name. Default is formed from the input file template by stripping off any leading directory and appending dtsd to the name.

 -help		Prints a description of the command line options.

8 Example: Multiple module detector calibration� TC "8 Example: Multiple module detector calibration" \f C \l "1" �

	Below is an example of a complete multiple module calibration. First the input files and the command script are listed, then the output is shown. To run this example, use

 calibrate.com mask.img >&! calibrate.log

at the Unix shell prompt after changing the directory to .../src/calibrate/test.

8.1 Input save files� TC "8.1 Input save files" \f C \l "2" �

	The C-shell script in section 8.1.3 below requires two input save files for the two separate runs of the calibrate program. The first run calibrates a single module spatial distortion. The second run calibrates the multiple module for non-uniformity of response. Since the input images are different sizes for these two runs, the save files need to reflect this.

8.1.1 Single module spatial distortion save file� TC "8.1.2 Single module spatial distortion savefile" \f C \l "3" �

	The items in bold below should be checked to make sure that the mask will be scanned properly. A method to do this is to run calibrate interactively, read in the save file and then choose Scan Mask from the Calibrate menu. If the mask is scanned successfully, then the parameters are correct. If it is not scanned correctly, adjust the parameters, re-

scan the mask and then save the parameters to a new save file. These are the mask scanning parameters that will be used in the C-shell script below.

 nonunf_filename 'nonunf

 nonunf_pattern '*nonunf*

 nonunf_dirname './

 distor_filename 'distor

 distor_pattern '*distor*

 distor_dirname './

 reference_filename 'reference

 reference_pattern '*reference*

 reference_dirname './

 flood_filename 'flood

 flood_pattern '*flood*

 flood_dirname './

 dark_filename 'dark

 dark_pattern '*dark*

 dark_dirname './

 mask_filename 'mask

 mask_pattern '*.mad

 mask_dirname './

 save_filename 'single_module.sav

 save_pattern '*.sav*

 save_dirname './

 badpix_filename 'BADPIX

 badpix_pattern '*BADPIX*

 badpix_dirname './

 flood_radial 0

 flood_interpolate 1

 flood_geometry 1

 flood_film 0

 darksub_const 1.0

 darksub_scale 0.0

 pixel_sd 10.0

 max_pixel 20000

 min_pixel 2000

 radial_distortion 0

 bad_peaks 2

 mask_angle 0.0

 min_peak 30000

 cent_to_maxval 2.0

 cent_to_pred 5.0

 background_pixels 25

 peak_size 9

 peak_distance 19.0

 center_peak 512 512

 search_radius 1000.0

 search_center 512 512

 vertical_limits 3 1021

 horizontal_limits 3 1021

 xtod_distance 150.0

 masktod_distance 0.0

 beam_position 512.0 512.0

 mask_spacing 1.00

 pixel_size 0.05

 dump_mode 0

 dump_filename DMPFIL

 display_min 0 0 0 0 0 0 0 0 0

 display_max 20000 10000 10000 1000 15000 100000 100000 100000 100000

 exit

8.1.2 Multiple module non-uniformity of response save file� TC "8.1.2 Multiple module non-uniformity of response savefile" \f C \l "3" �

	The items in bold below should be checked to make sure that bad pixels in the dark image and the flood image are properly detected. A method to do this is to run calibrate interactively, read in the save file and then choose Find Bad Pixels from the Calibrate menu. If this makes physical sense then the parameters are correct. Otherwise, adjust the parameters, re-determine the bad pixels and then save the parameters to a new save file.

 nonunf_filename 'nonunf

 nonunf_pattern '*nonunf*

 nonunf_dirname './

 distor_filename 'distor

 distor_pattern '*distor*

 distor_dirname './

 reference_filename 'reference

 reference_pattern '*reference*

 reference_dirname './

 flood_filename 'flood

 flood_pattern '*flood*

 flood_dirname './

 dark_filename 'dark

 dark_pattern '*dark*

 dark_dirname './

 mask_filename 'mask

 mask_pattern '*.mad

 mask_dirname './

 save_filename 'nonunf.sav

 save_pattern '*.sav*

 save_dirname './

 badpix_filename 'BADPIX

 badpix_pattern '*BADPIX*

 badpix_dirname './

 flood_radial 0

 flood_interpolate 1

 flood_geometry 1

 flood_film 0

 darksub_const 0.0

 darksub_scale 1.0

 pixel_sd 10.0

 max_pixel 65534

 min_pixel 2000

 radial_distortion 0

 bad_peaks 2

 mask_angle 0.0

 min_peak 30000

 cent_to_maxval 2.0

 cent_to_pred 5.0

 background_pixels 25

 peak_size 9

 peak_distance 19.0

 center_peak 1536 1536

 search_radius 2200.0

 search_center 1536 1536

 vertical_limits 32 3050

 horizontal_limits 32 3050

 xtod_distance 150.0

 masktod_distance 0.0

 beam_position 1536.0 1536.0

 mask_spacing 1.00

 pixel_size 0.05

 dump_mode 0

 dump_filename DMPFIL

 display_min 0 0 0 0 0 0 0 0 0

 display_max 20000 10000 10000 1000 15000 100000 100000 100000 100000

 exit

8.1.3 Input C-shell script calibrate.com� TC "8.1.3 Input C-shell script calibrate.com" \f C \l "3" �

	Below is an input script to do a complete calibration. Items in bold need to be edited for each detector calibration. Execute the script with the following command:

% calibrate.com mask.img>&! calibrate.log

#!/bin/csh -f

#

set echo

set verify

Routines used (they must be in the PATH):

#

dtdecompose

calibrate

multi

make_marks

make_interpolate

if ($1 ==) then

 echo -n "Enter multimodule mask filename : "

 set multimask = $<

else

 set multimask = $1

endif

if (!(-e $multimask)) then

 echo "File $multimask does not exist."

 exit 1

endif

set nmod = 9 # Number of modules

dtdecompose << EOF # Decompose big image into smaller images

$multimask

 0 0 1024 1024 $multimask:r1.tmp

1024 0 1024 1024 $multimask:r2.tmp

2048 0 1024 1024 $multimask:r3.tmp

 0 1024 1024 1024 $multimask:r4.tmp

1024 1024 1024 1024 $multimask:r5.tmp

2048 1024 1024 1024 $multimask:r6.tmp

 0 2048 1024 1024 $multimask:r7.tmp

1024 2048 1024 1024 $multimask:r8.tmp

2048 2048 1024 1024 $multimask:r9.tmp

EOF

rm -f multi.log # Remove any existing multi.log

touch multi.log # Create an empty multi.log to append to later

#

Run calibrate on each individual mask image.

#

set n = 1

while ($n <= $nmod)

 set mask = $multimask:r$n.tmp

 echo "Mask filename for module number " $n ": " $mask

 if (-e $mask) then

 calibrate -geom +0+0 -init single_module.sav -mask $mask \

 -distor $mask:r \

 -dump $mask:r.dmp -dark dark.img \

 -godistor -autoexit

	multi < $mask:r.dmp >> multi.log

 else

 echo "Bad filename ", $mask

 endif

 @ n++

end

grep "Correct" multi.log >! MISSING

emacs MISSING # Check the MISSING file to make sure there are lines

make_marks <<EOF

flood.img

10000

mark.img

EOF

make_interpolation << EOF

$multimask:r#

mark.img

yes

filled.img

distor

1546.60

1490.50

EOF

calibrate -geom +0+0 -init nonunf.sav -distor distor \

 -dark dark.img \

 -nonunf nonunf.img \

 -gononunf -flood flood.img -autoexit

exit

8.1.4 Image files� TC "8.1.4 Image files" \f C \l "3" �

The above scripts use the following image files:

	mask.img

	flood.img

	dark.img

The format of these files is described in section 9.

8.2 Output� TC "8.2 Output" \f C \l "2" �

The following output is generated by the script in section 8.1.3:

set verify

if (mask.img ==) then

set multimask = mask.img

endif

if (! (-e mask.img)) then

set nmod = 9

dtdecompose

dtdecompose: Copyright (c) 1995 Molecular Structure Corporation

dtdecompose: Enter input image name:

 Cimage::nRead filename is mask.img

File mask.img successfully opened.

Header of file mask.img successfully read.

Image is 3072 by 3072 pixels.

Data_type in header is short int.

Compression_type is None.

Byte_order is big_endian.

dtdecompose: Enter origin and

 extents to extract and output filename:

 File mask1.tmp successfully opened.

Success writing file mask1.tmp!

dtdecompose: Wrote image mask1.tmp with origin at 0, 0 and extents 1024, 1024

dtdecompose: Enter origin and

 extents to extract and output filename:

 File mask2.tmp successfully opened.

Success writing file mask2.tmp!

dtdecompose: Wrote image mask2.tmp with origin at 1024, 0 and extents 1024, 1024

dtdecompose: Enter origin and

 extents to extract and output filename:

 File mask3.tmp successfully opened.

Success writing file mask3.tmp!

dtdecompose: Wrote image mask3.tmp with origin at 2048, 0 and extents 1024, 1024

dtdecompose: Enter origin and

 extents to extract and output filename:

 File mask4.tmp successfully opened.

Success writing file mask4.tmp!

dtdecompose: Wrote image mask4.tmp with origin at 0, 1024 and extents 1024, 1024

dtdecompose: Enter origin and

 extents to extract and output filename:

 File mask5.tmp successfully opened.

Success writing file mask5.tmp!

dtdecompose: Wrote image mask5.tmp with origin at 1024, 1024 and extents 1024, 1024

dtdecompose: Enter origin and

 extents to extract and output filename:

 File mask6.tmp successfully opened.

Success writing file mask6.tmp!

dtdecompose: Wrote image mask6.tmp with origin at 2048, 1024 and extents 1024, 1024

dtdecompose: Enter origin and

 extents to extract and output filename:

 File mask7.tmp successfully opened.

Success writing file mask7.tmp!

dtdecompose: Wrote image mask7.tmp with origin at 0, 2048 and extents 1024, 1024

dtdecompose: Enter origin and

 extents to extract and output filename:

 File mask8.tmp successfully opened.

Success writing file mask8.tmp!

dtdecompose: Wrote image mask8.tmp with origin at 1024, 2048 and extents 1024, 1024

dtdecompose: Enter origin and

 extents to extract and output filename:

 File mask9.tmp successfully opened.

Success writing file mask9.tmp!

dtdecompose: Wrote image mask9.tmp with origin at 2048, 2048 and extents 1024, 1024

dtdecompose: Enter origin and

 extents to extract and output filename:

dtdecompose: Done

rm -f multi.log

touch multi.log

set n = 1

while (1 < = 9)

set mask = mask1.tmp

echo Mask filename for module number 1 : mask1.tmp

Mask filename for module number 1 : mask1.tmp

if (-e mask1.tmp) then

calibrate -geom +0+0 -init single_module.sav -mask mask1.tmp -distor mask1 -dump mask1.dmp -dark dark.img -nonunf mask1.nonunf -godistor -autoexit

multi

else

@ n++

end

while (2 < = 9)

set mask = mask2.tmp

echo Mask filename for module number 2 : mask2.tmp

Mask filename for module number 2 : mask2.tmp

if (-e mask2.tmp) then

calibrate -geom +0+0 -init single_module.sav -mask mask2.tmp -distor mask2 -dump mask2.dmp -dark dark.img -nonunf mask2.nonunf -godistor -autoexit

multi

else

@ n++

end

while (3 < = 9)

set mask = mask3.tmp

echo Mask filename for module number 3 : mask3.tmp

Mask filename for module number 3 : mask3.tmp

if (-e mask3.tmp) then

calibrate -geom +0+0 -init single_module.sav -mask mask3.tmp -distor mask3 -dump mask3.dmp -dark dark.img -nonunf mask3.nonunf -godistor -autoexit

multi

else

@ n++

end

while (4 < = 9)

set mask = mask4.tmp

echo Mask filename for module number 4 : mask4.tmp

Mask filename for module number 4 : mask4.tmp

if (-e mask4.tmp) then

calibrate -geom +0+0 -init single_module.sav -mask mask4.tmp -distor mask4 -dump mask4.dmp -dark dark.img -nonunf mask4.nonunf -godistor -autoexit

multi

else

@ n++

end

while (5 < = 9)

set mask = mask5.tmp

echo Mask filename for module number 5 : mask5.tmp

Mask filename for module number 5 : mask5.tmp

if (-e mask5.tmp) then

calibrate -geom +0+0 -init single_module.sav -mask mask5.tmp -distor mask5 -dump mask5.dmp -dark dark.img -nonunf mask5.nonunf -godistor -autoexit

multi

else

@ n++

end

while (6 < = 9)

set mask = mask6.tmp

echo Mask filename for module number 6 : mask6.tmp

Mask filename for module number 6 : mask6.tmp

if (-e mask6.tmp) then

calibrate -geom +0+0 -init single_module.sav -mask mask6.tmp -distor mask6 -dump mask6.dmp -dark dark.img -nonunf mask6.nonunf -godistor -autoexit

multi

else

@ n++

end

while (7 < = 9)

set mask = mask7.tmp

echo Mask filename for module number 7 : mask7.tmp

Mask filename for module number 7 : mask7.tmp

if (-e mask7.tmp) then

calibrate -geom +0+0 -init single_module.sav -mask mask7.tmp -distor mask7 -dump mask7.dmp -dark dark.img -nonunf mask7.nonunf -godistor -autoexit

multi

else

@ n++

end

while (8 < = 9)

set mask = mask8.tmp

echo Mask filename for module number 8 : mask8.tmp

Mask filename for module number 8 : mask8.tmp

if (-e mask8.tmp) then

calibrate -geom +0+0 -init single_module.sav -mask mask8.tmp -distor mask8 -dump mask8.dmp -dark dark.img -nonunf mask8.nonunf -godistor -autoexit

multi

else

@ n++

end

while (9 < = 9)

set mask = mask9.tmp

echo Mask filename for module number 9 : mask9.tmp

Mask filename for module number 9 : mask9.tmp

if (-e mask9.tmp) then

calibrate -geom +0+0 -init single_module.sav -mask mask9.tmp -distor mask9 -dump mask9.dmp -dark dark.img -nonunf mask9.nonunf -godistor -autoexit

multi

else

@ n++

end

while (10 < = 9)

grep Correct multi.log

emacs MISSING

make_marks

 Flood field filename [flood.mad] : Minimum flood field value [10000] : Image Size 3072 3072

 Number bad pixels 708868

 Number good pixels 8728316

 Mark filename [mark.mad] : make_interpolation

 Interpolation template [mask_#] : Reading : mask1

 4.9999997E-02 1024 1024

 Reading : mask2

 5.0000016E-02 1024 1024

 Reading : mask3

 4.9999990E-02 1024 1024

 Reading : mask4

 4.9999993E-02 1024 1024

 Reading : mask5

 4.9999997E-02 1024 1024

 Reading : mask6

 5.0000001E-02 1024 1024

 Reading : mask7

 4.9999982E-02 1024 1024

 Reading : mask8

 5.0000016E-02 1024 1024

 Reading : mask9

 4.9999982E-02 1024 1024

 Missing reference mask points:

 Module X Y

 1 492.55 449.41

 2 516.78 460.34

 3 536.49 452.26

 4 501.62 473.38

 5 522.62 466.53

 6 538.65 465.15

 7 497.06 499.58

 8 525.37 498.19

 9 539.61 498.76

 1000.000

 Module 1

 Actual 1

 Index 1 1

 Start 1 1

 Step 4 4

 Position 492.5512 449.4068

 Shifted 492.5512 449.4068

 Expected 546.6213 490.5266

 Difference 54.07013 41.11981

 Move 54.07013 41.11981

 (Move) 5407.013 4111.981

 Offset 0.0000000E+00 0.0000000E+00

 **

 Module 2

 Actual 2

 Index 2 1

 Start 1 1

 Step 4 4

 Position 516.7823 460.3420

 Shifted 1540.782 460.3420

 Expected 1546.622 490.5266

 Difference 5.839478 30.18460

 Move 1029.839 30.18460

 (Move) 102984.0 3018.460

 Offset 256.0000 0.0000000E+00

 **

 Module 3

 Actual 3

 Index 3 1

 Start 1 1

 Step 4 4

 Position 536.4874 452.2554

 Shifted 2584.487 452.2554

 Expected 2546.622 490.5266

 Difference -37.86523 38.27121

 Move 2010.135 38.27121

 (Move) 201013.5 3827.121

 Offset 512.0000 0.0000000E+00

 **

 Module 4

 Actual 4

 Index 1 2

 Start 1 1

 Step 4 4

 Position 501.6197 473.3830

 Shifted 501.6197 1497.383

 Expected 546.6213 1490.527

 Difference 45.00165 -6.856079

 Move 45.00165 1017.144

 (Move) 4500.165 101714.4

 Offset 0.0000000E+00 256.0000

 **

 Module 5

 Actual 5

 Index 2 2

 Start 1 1

 Step 4 4

 Position 522.6217 466.5270

 Shifted 1546.622 1490.527

 Expected 1546.622 1490.527

 Difference 0.0000000E+00 0.0000000E+00

 Move 1024.000 1024.000

 (Move) 102400.0 102400.0

 Offset 256.0000 256.0000

 **

 Module 6

 Actual 6

 Index 3 2

 Start 1 1

 Step 4 4

 Position 538.6456 465.1524

 Shifted 2586.646 1489.152

 Expected 2546.622 1490.527

 Difference -40.02344 1.374634

 Move 2007.977 1025.375

 (Move) 200797.7 102537.5

 Offset 512.0000 256.0000

 **

 Module 7

 Actual 7

 Index 1 3

 Start 1 1

 Step 4 4

 Position 497.0619 499.5789

 Shifted 497.0619 2547.579

 Expected 546.6213 2490.527

 Difference 49.55945 -57.05151

 Move 49.55945 1990.948

 (Move) 4955.945 199094.9

 Offset 0.0000000E+00 512.0000

 **

 Module 8

 Actual 8

 Index 2 3

 Start 1 1

 Step 4 4

 Position 525.3714 498.1926

 Shifted 1549.371 2546.193

 Expected 1546.622 2490.527

 Difference -2.749634 -55.66528

 Move 1021.250 1992.335

 (Move) 102125.0 199233.5

 Offset 256.0000 512.0000

 **

 Module 9

 Actual 9

 Index 3 3

 Start 1 1

 Step 4 4

 Position 539.6090 498.7557

 Shifted 2587.609 2546.756

 Expected 2546.622 2490.527

 Difference -40.98682 -56.22827

 Move 2007.013 1991.772

 (Move) 200701.3 199177.2

 Offset 512.0000 512.0000

 **

 Mark filename [mark.mad] : Correcting mark image distortions

 Image Size : 3072 3072

 Image Array Size : 3072 3072

 Int Table Size : 768 768

 Int Table Array Size : 768 768

 Int X start, step : 1 4

 Int Y start, step : 1 4

 Clearing output image

 Starting main loop

 Line : 100

 Line : 200

 Line : 300

 Line : 400

 Line : 500

 Line : 600

 Line : 700

 Line : 800

 Line : 900

 Line : 1000

 Line : 1100

 Line : 1200

 Line : 1300

 Line : 1400

 Line : 1500

 Line : 1600

 Line : 1700

 Line : 1800

 Line : 1900

 Line : 2000

 Line : 2100

 Line : 2200

 Line : 2300

 Line : 2400

 Line : 2500

 Line : 2600

 Line : 2700

 Line : 2800

 Line : 2900

 Line : 3000

 Filling holes in mark image

 ================

 Iteration 1

 New good 2332

 Number of bad 868833

 ================

 Iteration 2

 New good 23

 Number of bad 866501

 ================

 Iteration 3

 New good 5

 Number of bad 866478

 Write MARK file [no] ?

 Filled MARK filename [mark.filled] :

 Starting REVERSE interpolation tables

 Output template filename [mask] :

 Enter X beam position [1536] :

 Enter Y beam position [1536] :

 calibrate -geom +0+0 -init nonunf.sav -distor distor -dark dark.img -nonunf nonunf.img -gononunf -flood flood.img -autoexit

 Maximum reference/floodfield ratio : 4.725791

 Minimum reference/floodfield ratio : 3.5424564E-05

 Scale factor : 6771.354

exit

9 File formats� TC "9 File formats" \f C \l "1" �

	Calibrate works with image files, spatial distortion filesets, bad pixel list files and save files. The save file format has been described in section 4.3 and two examples have been shown in sections 8.1.1 and 8.1.2. In the following sections, the image file format, the bad pixel list file format and the spatial distortion fileset formats are described. The non-uniformity file has the same format as an image file. The calibrate resource file is described in Appendix B.

9.1 Image files� TC "9.1 Image files" \f C \l "2" �

	Image files use a format first developed by Jon Cristy of Dupont and then modified by Jim Pflugrath and Marty Stanton for area detector images. The files consist of an ASCII header described in section 9.1.1 followed by binary data.

9.1.1 Image header format� TC "9.1.1 Image header format" \f C \l "3" �

	The image header format consists of an ASCII string that has a length that is a multiple of 512 characters with a minimum length of 512 and maximum length of an integer whose ASCII representation fits in 5 digits. (when using Stantonís routines, the limit is 2048 characters). Padding (space ' ') characters will be used to pad the image header so its length is a multiple of 512 characters.

The string consists of human readable text in the form:

KEYWORD=VALUE;^J

KEYWORD	is a case-sensitive string bounded by whitespace on the left, with no whitespace within. KEYWORD must begin with a letter or underscore and can contain only letters, digits and underscores. The length of KEYWORD may not exceed 32 characters.

=	is the equal sign; there is no whitespace on the left side, but may or may not be on the right.

VALUE	is the value of the keyword, which may be a number (integer or float), a string or arrays of numbers. A string value cannot contain the {, } and ; characters. Elements in arrays are separated by whitespace.

;		is the semicolon character; it may or may not be preceded by whitespace.

^J		is the newline character (ASCII 10).

Whitespace is any length sequence of space, tab, and/or newline characters.

Other image header requirements:

1. The header begins with the 2-character sequence ë{ ^Jí, where ^J is ASCII 10.

2. The third character is the position of the start of the required keyword=pair:

 HEADER_BYTES=value;

	which gives the length in bytes of the entire header. The unpadded part of the 	header always ends with the 3 character sequence:

	} ^J ^L

where ^J is ASCII 10 and ^L is ASCII 12. With this one can use the Unix 'more' command to view image headers and avoid viewing binary data. Padding will occur after the ^L if necessary.

3. The following keywords are also required for images and must be placed in the image header when an image is constructed:

	DIM = value;		The number of dimensions in the image (usually 2)

	SIZE1 = value;	The number of pixels along the 1st direction.

	SIZE2 = value;	The number of pixels along the 2nd direction.

	TYPE = mad;		Required to read these images with MADNES and the binary image data is of type short integer.

	BYTE_ORDER = big_endian | little_endian

				 The byte order of the data

	Data_type = signed char | unsigned char | short int | long int | unsigned short int

			| unsigned lont int | float IEEE | Compressed | Other

	where

		signed char		is signed one byte integer value

		unsigned char		is unsigned one byte integer value

		short int		is signed 2-byte integer value

		long int		is signed 4-byte integer value

		unsigned short int	is signed 2-byte integer value

		unsigned long int	is signed 4-byte integer value

		float IEEE		is IEEE floating point values

		Compressed		means the data is compressed. Then there must be a 					COMPRESSION keyword for the algorithm.

		Other			is some other representation which will make the

					data unusable by most programs. There should be

					an DATA_OTHER keyword with more information.

9.1.2 Image data format� TC "9.1.2 Image data format" \f C \l "3" �

	After the image header, the binary values of all the pixels in the image occur. The binary may be of any type allow by the header and may have any byte order.

9.2 Bad pixel list file� TC "9.2 Bad pixel list file" \f C \l "2" �

	The bad pixel list file consists of the following ASCII keywords followed by the indicated parameters. The file can have any length.

PIXEL		pxfast pxslow badflag

LINE 	pxline pxstart pxend badflag

COLUMN	pxcolumn pxstart pxend badflag

where pxfast, pxslow, pxstart and pxend are pixel coordinates. Pxline is the pixel value of a line. Pxcolumn is the pixel value of a column. The first pixel has coordinate (1,1). A LINE indicates a contiguous set of pixels along the fastest varying image dimension. Pixel coordinates occur as (LINE, COLUMN) pairs.

Badflg is an integer which indicates the type of pixel defect:

	0	Dark (below min value, 4.2.2.4)

	1	Bright (above max value, 4.2.2.4)

	2	Out of bounds (outside search limits, 4.2.2.2)

	3	Bad standard deviation (4.2.2.4)

The file can contain comments that begin with an exclamation point ë!í.

9.3 Calibration files� TC "9.3 Calibration files" \f C \l "2" �

9.3.1 The non-uniformity file� TC "9.3.1 The non-uniformity file" \f C \l "3" �		

	The non-uniformity file has the same format as image files, but with the additional keywords NONUNF_FLAG1, NONUNF_FLAG2, NONUNF_FLAG3, NONUNF_FLAG4 which give the pixel values of flagged bad pixels in the file. To correct an image for non-uniformity of response, first compute the average of the non-uniformity file pixels near the center of the image, next subtract away any dark current and non-X-ray signal from all the pixels, then multiple each pixel by the ratio of the NONUNF value to the average NONUNF value near the center:

 Corrected value = (observed value - dark value) * NONUNF(px1, px2) /

		(average NONUNF near center)

Any pixel with a value equal to one of the NONUNF_FLAG* values is a bad pixel.

9.3.2 The spatial distortion fileset� TC "9.3.2 The spatial distortion fileset" \f C \l "3" �	

	The spatial distortion fileset consists of five files which have a format based on the image file format. The files are named basename.*, where basename is chosen by the user and * is:

	calpar		Calibration parameters

	x_int		Coded Xmm for a pixel

	y_int		Coded Ymm for a pixel

	inv_x_int	X pixel for a coded Xmm,Ymm

	inv_y_int	Y pixel for a coded Xmm,Ymm

	The .calpar file has the same format as an image file header and contains information about how the fileset was generated. It contains the primary beam position and other information needed by d*TREK and MADNES. The four other files have the image file format as described in section 9.1. They contain pixel to millimeter and millimeter to pixel information for everything fourth pixel. Thus they have different dimensions than the images used to create them. For example, spatial distortion files for a 3072 x 3072 pixel image are dimensioned 768 x 768.

�
Appendix A Installation� TC "Appendix A Installation" \f C \l "1" �		

	The calibrate files are a mixture of C source code, C++ source code and older Fortran code. The files are distributed as a compressed tar file. To install the calibration files, first have the Free Software Foundation GNU gmake tool and gcc compiler along with its class libraries installed on the system. Also install NSCA Mosaic. Then choose a directory for the installation of the calibrate software, uncompress and untar the tar file and change directory to the .../src/calibrate and type use the make utility to build executables images::

mkdir .../DTREK

cd .../DTREK

zcat calibrate.tar.Z | tar xvfo

cd src/calibrate

make

make install

cd ../c++

gmake

gmake install

Edit the calibrate resource file as described in Appendix B and copy it to an application defaults directory. Finally, place .../DTREK/bin in your path.

The example shown in section 8 can be found in the.../src/calibrate/test directory.� TC �

�
Appendix B Resource file� TC "Appendix B Resource file" \f C \l "1" �

	The calibrate resource file is necessary to specify the text of the labels and the name of the help command and the help document. The resource file must reside in a directory normally searched by the X Window server for resource files. On Unix platforms the file is called Calibrate. On VMS platforms the file is called CALIBRATE.DAT. Here is a copy of a typical resource file.

fontList: --helvetica-bold-r-*-*-17-*-*

XmPushButtonfontList: --helvetica-bold-r-*-*-17-*-*

XmTextField.fontList: --helvetica-bold-r-*-*-14-*-*-*

XmLabel.fontList: --helvetica-bold-r-*-*-14-*-*

XmToggleButton.fontList: --helvetica-bold-r-*-*-14-*-*

*background: gray95

*helpDocument:

file://localhost/rxdat1/people/jwp/DTREK/doc/calibrate.html

!*helpDocument: file://localhost/jwp_disk:[jwp.DTREK.doc]calibrate.html

! Do not change the next *helpTmpdir value from /tmp/.

*helpTmpdir:		/tmp/

!*helpTmpdir:		sys$login:

*helpMosaicCommand:	mosaic

!*helpMosaicCommand: echo "NCSA Mosaic not installed.�
 Cannot view\n "

!*helpMosaicCommand:	write sys$error "NCSA Mosaic not installed.�
\n"!

*w_help_cb.labelString: Help

*w_beam_position_label.labelString: Beam Position

*w_xtod_distance_label.labelString: Crystal-Detector\nDistance

*w_horizontal_limits_label.labelString: Horizontal (X)\nSearch Limits

*w_vertical_limits_label.labelString: Vertical (Y)\nSearch Limits

*w_search_center_label.labelString: Search\nCenter

*w_search_radius_label.labelString: Search\nRadius

*w_center_peak_label.labelString: Center Peak\nPosition

*w_peak_distance_label.labelString: Distance\nBetween Peaks

*w_peak_size_label.labelString: Peak\nSize

*w_background_pixels_label.labelString: Number of Back-\nground Pixels

*w_cent_to_pred_label.labelString: Max. Centroid-\nPred. Distance

*w_cent_to_maxval_label.labelString: Max. Centroid-\nMax Value Dist.

*w_min_peak_label.labelString: Min. Integrated\nPeak Intensity

*w_mask_angle_label.labelString: Mask Angle

*w_bad_peaks_label.labelString: Bad Peaks\nAllowed

*w_radial_label.labelString: Radial\nDistortion

*w_radial_distortion.labelString: Yes

*w_noradial_distortion.labelString: No

*w_pixel_size_label.labelString: Pixel\nSize (mm)

*w_mask_spacing_label.labelString: Mask\nSpacing (mm)

*w_minmax_pixel_label.labelString: Min, Max\nPixel Value

*w_pixel_sd_label.labelString: Max. Pixel\nStd. Deviation

*w_darksub_scale_label.labelString: Dark Subtract\nScale Factor

*w_darksub_const_label.labelString: Dark Subtract\nConstant

*w_reffrom_label.labelString: Reference Determined From:

*w_flood_film.labelString: File

*w_flood_geometry.labelString: Calculated

*w_flood_label.labelString: Distort Reference Based On:

*w_flood_interpolate.labelString: Int. Table

*w_flood_radial.labelString: Radial

*w_flood_none.labelString: None

*w_mask_filename_label.labelString: Mask Image\nFilename

*w_dark_filename_label.labelString: Dark Image\nFilename

*w_flood_filename_label.labelString: Flood Image\nFilename

*w_reference_filename_label.labelString: Reference Image\nFilename

*w_distor_filename_label.labelString: Interpolation\nTable Basename

*w_badpix_filename_label.labelString: Bad Pixel List\nFilename

*w_nonunf_filename_label.labelString: Non-Uniformity\nFilename

*w_cursor_position_label.labelString: Cursor\nPosition

*w_pixel_value_label.labelString: Pixel\nValue

*w_peak_centroid_label.labelString: Peak\nCentroid

*w_peak_intensity_label.labelString: Peak\nIntensity

*w_display_minimum_label.labelString: Display\nMin.

*w_display_maximum_label.labelString: Display\nMax.

*w_zoom_factor_label.labelString: Zoom\nFactor

*w_program_status_label.labelString: Program Status:

*w_file_cb.labelString: File

*w_read_cb.labelString: Read

*w_file_readmask.labelString: Mask...

*w_file_readflood.labelString: Flood...

*w_file_readdark.labelString: Dark...

*w_file_readreference.labelString: Reference...

*w_file_readdistor.labelString: DISTOR...

*w_file_readnonunf.labelString: NONUNF...

*w_write_cb.labelString: Write

*w_file_writemask.labelString: Mask...

*w_file_writeflood.labelString: Flood...

*w_file_writedark.labelString: Dark...

*w_file_writereference.labelString: Reference...

*w_file_writedistor.labelString: DISTOR...

*w_file_writenonunf.labelString: NONUNF...

*w_file_readsave.labelString: Read Save...

*w_file_writesave.labelString: Write Save...

*w_file_readbadpix.labelString: Read Bad Pixel List...

*w_file_exit.labelString: Exit

*w_action_cb.labelString: Calibrate

*w_action_go.labelString: Go Calibrate

*w_action_godistor.labelString: Go DISTOR

*w_action_scanmask.labelString: Scan Mask

*w_action_interpolate.labelString: Calculate DISTOR

*w_action_gononunf.labelString: Go NONUNF

*w_badpix_cb.labelString: Find Bad Pixels

*w_action_darkimage.labelString: Dark Image

*w_action_floodimage.labelString: Flood Image

*w_action_clearbadpix.labelString: Clear Bad Pixels

*w_action_darksub.labelString: Flood - Dark

*w_action_calcref.labelString: Calculate Reference

*w_action_distortref.labelString: Distort Reference

*w_action_scale.labelString: Calculate NONUNF

*w_action_maskdarksub.labelString: MASK - DARK

*w_action_cornuf.labelString: Correct MASK NONUNF

*w_action_cordis.labelString: Correct MASK DISTOR

*w_display_cb.labelString: View

*w_display_mask.labelString: Mask

*w_display_dark.labelString: Dark

*w_display_flood.labelString: Flood

*w_display_reference.labelString: Reference

*w_displaydistor_cb.labelString: DISTOR

*w_display_xint.labelString: x_int

*w_display_yint.labelString: y_int

*w_display_invxint.labelString: inv_x_int

*w_display_invyint.labelString: inv_y_int

*w_display_nonunf.labelString: NONUNF

*w_display_limits.labelString: Search Limits

*w_display_badpix.labelString: Bad Pixels

d*TREK Calibrate		Revision 01

Molecular Structure Corporation		August 1, 1996

Document No. SBC01-????-00		Page � PAGE �6� of 47

