

dtreflnmerge

SBC01-????-00

February 16, 1996

				Prepared by:		J.W. Pflugrath

							Molecular Structure Corporation

							3200 Research Forest Drive

							The Woodlands, Texas 77381

							(713) 363-1033

							(713) 364-3628 FAX

							jwp@msc.com

				Prepared for:		Contract No. 943072401

							Mary Westbrook

							Argonne National Laboratory

							9700 South Cass Avenue

							Argonne, Illinois 60439

							(708) 252-8914

							(708) 252-4021 FAX

							westbrook@anlel.el.anl.gov

				Reviewed by:

				Approved by:

Copyright (1996, 1995, 1994 Molecular Structure Corporation

RESTRICTED RIGHT NOTICE SHORT FORM (JUNE 1987)

Use, reproduction, or disclosure is subject to restrictions set forth in Contract No. W-31

109-ENG-38 and Contract No. 943072401 with the University of Chicago, Operator of

Argonne National Laboratory

	

TABLE OF CONTENTS

� TOC \f �1 Scope and Purpose	� GOTOBUTTON _Toc349989189 � PAGEREF _Toc349989189 �3��

1.1. Definitions and Abbreviations	� GOTOBUTTON _Toc349989190 � PAGEREF _Toc349989190 �3��

2 Background	� GOTOBUTTON _Toc349989191 � PAGEREF _Toc349989191 �3��

3 d*TREK reflection list format	� GOTOBUTTON _Toc349989192 � PAGEREF _Toc349989192 �4��

4 Running dtreflnmerge	� GOTOBUTTON _Toc349989193 � PAGEREF _Toc349989193 �5��

4.1. Command line options	� GOTOBUTTON _Toc349989194 � PAGEREF _Toc349989194 �5��

4.2. Examples	� GOTOBUTTON _Toc349989195 � PAGEREF _Toc349989195 �10��

4.3. Tips	� GOTOBUTTON _Toc349989196 � PAGEREF _Toc349989196 �14��

4.4. Incorrect examples	� GOTOBUTTON _Toc349989197 � PAGEREF _Toc349989197 �15��

Appendix A Reflection list fieldnames	� GOTOBUTTON _Toc349989198 � PAGEREF _Toc349989198 �17��

�

�
1 Scope and Purpose� TC "1 Scope and Purpose" \f C \l "1" �

This document describes how to use the dtreflnmerge utility to merge and filter d*TREK reflection lists. You use dtreflnmerge to:

merge two or more reflection lists into a single list,

remove one or more fields from a reflection list,

add one or more fields to a reflection list,

set a field to a constant value,

add or subtract a number to or from any numeric field,

multiply or divide any numeric field by a number,

include or exclude reflections with logical operations on fields such as ==, !=, >, >=, <, and <=,

reindex hkls by multiplying by a 3x3 matrix,

reduce hkls to the asymmetric unit and then sort on hkl,

calculate the resolution in Ångstroms for each reflection,

prepare a reflection list for input to the dtscalemerge program, and

assign reflections to different scaling batches by a variety of schemes.

You can combine any filtering operation with merging, so that you include only the reflections and fields that interest you in the output reflection list. As you will see, the filtering syntax is general enough that you will invent new uses for dtreflnmerge.

1.1 Definitions and Abbreviations� TC "1.1. Definitions and Abbreviations" \f C \l "2" �

The definitions described in the dtcollect, tCrefine, and dtpredict documents are appropriate for dtreflnmerge.

2 Background� TC "2 Background" \f C \l "1" �

Lists of Bragg reflections are used in many crystallographic calculations. For example, during single crystal diffraction data collection you generate a reflection list when you find peaks in images. You also generate a list when you predict reflections in an image. You generate a list when you integrate Bragg reflections in images. Each of these lists can contain different kinds of information, so that reflections in the lists can have many different properties attached to them, such as the Miller index, intensity, observed position, calculated position and so on. Thus lists of reflections can have many different properties depending on the purpose of the reflection list. All reflections in a list have the same properties or fields. Reflections probably have different values for the fields, such as different Miller indices, but they may also have the identical value for a field such as the crystal name or batch name.

The d*TREK reflection list format described briefly below was developed to encapsulate all possible reflection lists that might be used in crystallographic applications. You can consider a d*TREK reflection list to be a m by n array where m reflections have n fields, with both m and n limited only by the amount of virtual memory on the computer. A reflection list could also be thought of as a spreadsheet of m rows and n columns. The fields may be of type integer, floating point or string. Many crystallographic applications manipulate reflection lists. Each different application may require or expect a different set of properties in the reflection list. Each different application may calculate new properties and add them to the reflection list.

Because d*TREK reflection lists can contain widely different information, the dtreflnmerge utility was developed to manipulate lists outside of the standard crystallographic applications. The main use of dtreflnmerge is to merge reflection lists that result from integrating different data acquisition scans and to prepare a merged list for input to the dtscalemerge program.

3 d*TREK reflection list format� TC "3 d*TREK reflection list format" \f C \l "1" �

d*TREK reflection lists have a simple format which is described in detail in the Appendix. In a nutshell, a d*TREK reflection list consists of human-readable ASCII characters. The list has a short header followed by the list of reflections. The first line of the header contains 3 integer numbers which denote the number of integer fields, floating point fields and string fields for each reflection. This line is followed by the names of the fields, one per line. After the field names, each reflection occupies one line that contains values for the fields in the header in free format. Integer field names usually begin with a lowercase n, as in nH, nK, and nL. Floating point field names usually begin with a lowercase f, as in fIntensity and fSigmaI. String field names usually begin with a lower case s, as in sBatch. Other fields are optional. Although d*TREK programs recognize and use a set of standard field names, you are free to add or use any field names you wish for your own purposes. In the reflection list, the fields must be ordered so that the integer fields come first, the floating point fields next and string fields last. The first 3 integer fields must be nH, nK, and nL. The first two floating point fields must be fIntensity, fSigmaI. There are no required string fields. Next is an example of a minimal reflection list with a single reflection.

3 2 0

nH

nK

nL

fIntensity

fSigmaI

 4 1 2 8934.24 94.521

Each reflection record in a list must contain a value for each and every field specified in the header. That is, all reflections in a list contain the same fields, though they may or may not have different values for the fields. Lists are not assumed to be sorted in any particular order.

If necessary, dtreflnmerge reads the header of an input image specified on the command line to get the crystal unit cell dimensions and spacegroup. This is a prerequisite for certain filtering operations such as reducing Miller indices to an asymmetric unit or calculating the resolution of reflections. The image header format is described elsewhere (for example, see the dtpredict documentation).

4 Running dtreflnmerge� TC "4 Running dtreflnmerge"\f C \l "1" �

After dtreflnmerge has been installed and placed in your PATH, just enter dtreflnmerge along with command line options to run it. It parses the command line arguments, reads any required input reflection lists and image headers and writes a new reflection list. Messages are written to stdout and stderr as required. The syntax for running dtreflnmerge is:

dtreflnmerge [output_field_options] input_file1 [input_file_options]

 	[input_filen [input_filen_options] ...]

 output_file [output_file_options]

Only one reflection list (output_file) is output per dtreflnmerge run. As a safety precaution, dtreflnmerge will not overwrite an existing file when it tries to create the output file. Note that if you use any options that require spacegroup information, then the environment variable DTREK_SPACEGROUP_FILE should also define a valid d*TREK spacegroup file.

4.1 Command line options� TC "4.1. Command line options" \f C \l "2" �

You tell dtreflnmerge what to do with options specified on the command line. Options are processed in the order they appear on the command line. The syntax of the command line options is described next.

output_field_options

	Enter the names of the fields to exclude from the output file each preceded by a - sign. For example with

		-fObs_pixel0 -fCalc_Xmm

	neither the fObs_pixel0 nor the fCalc_Xmm field will appear in the output_file.

input_file(s)

	The name of a d*TREK reflection list file. As many input files as desired may be placed on the command line, they will be combined in the output file in the order presented on the command line. Also the same input file may be repeated with different input file options in order to select different subsets of reflections from the same input file. All reflections in an input file will be copied to the output except those deselected by an input file option. In other words, all reflections are selected by default.

input_file_options

	Input file options follow the name of the input file and apply only to that input file. The options are applied in the order given, so care must be taken to achieve the desired result. Input file options take several forms as described below. There can be no whitespace in any input file options. That is, do not use space, tab or newline characters to separate the subfields of an input file option. Also note that with most shells the !, >, <, and * characters must be escaped typically by preceding them with a backslash \.

		Summary of forms

	-fieldresultBOOLvalue		(BOOL: == != > < >= <=)

	+fieldresultBOOLvalue

	-fieldname=value

	+fieldname=value

	-fieldnameMATHvalue		(MATH: += -= *= /=)

	+fieldnameMATHvalue

	-reindex=m11,m12,m13,m21,m22,m23,m31,m32,m33

		Form 1

	Use the following syntax to exclude (deselect) reflections or to include (select) previously excluded reflections:

	-fieldresultBOOLvalue		(- means exclude)

	+fieldresultBOOLvalue		(+ means include)

	where

	- means exclude reflections which fit selection

	+ means include reflections which fit selection

 	fieldresult

	 is a eifther single fieldname or two fieldnames of the same type (integer, float, string) separated by a +, -, *, or / character. With two fieldnames, the math operation is performed with the values of the fields and the result is compared to value. With a single fieldname, the value of that field is compared to value. The fieldnames must already exist in the input file.

	BOOL is one of	

			==		(is equal to)

			!=		(is not equal to)

			<		(is less than)

			>		(is greater than)

			>=		(is greater than or equal to)

			<= 		(is less than or equal to)

	which defines the type of comparison to make between fieldresult and value.

 	value

	is the value to compare to fieldresult. If fieldresult is of type string, and value ends in an asterisk, then the comparison is tested only up to the number of characters before the asterisk in both fieldresult and value. In effect, the asterisk if it is the last character acts like a wildcard character.

	Example 1.1: Exclude reflections with intensities between 50 and 100:

			-fIntensity<=100.0 +fIntensity<=50.0

	Example 1.2: Exclude reflections in an ice ring around 3.8 Å:

			-fResolution<3.85 +fResolution<3.75

	Example 1.3: Exclude reflections with I/sigmaI < 3:

			-fIntensity/fSigmaI<3

	Example 1.4: Exclude reflections with sBatch names beginning with L0, 		 but include L001 in any case:

				-sBatch==L0* +sBatch==L001

			

 	Form 2

	-fieldname=value

	+fieldname=value

		where

	+ -	there is no difference between using a - or + character, both mean 	operate on fieldname.

	fieldname

	is any fieldname, either existing or new. Do not use fieldnames with +, -, *, /, =, >, <, or ! characters in them..

		=	is the equals sign

	value

	is a value to set the field named by fieldname to for all reflections in the reflection list.

	The type of field (integer, float, or string) is determined from the first letter of fieldname (n, f or s) or from the value type.

	Example 2.1: Add sBatch and nDetNum fields to all reflections:

		-sBatch=X001 -nDetNum=1

	Example 2.2: Make all h’s equal to 1 (Why? It is just an example!):

		-nH=1

	

	Form 3

	-fieldnameMATHvalue

	+fieldnameMATHvalue

		where

	+ -	there is no difference between using a - or + character, both mean 	operate on fieldname.

	fieldname

	is any existing integer or float fieldname. Do not use fieldnames with +, -, *, /, =, >, <, or ! characters in them..

	MATH	is one of	

			+=		(add to)

			-=		(subtract from)

			 *=		(multiply by)

			 /=		(divide into)

	which defines the math operation to perform between the value of fieldname and value.

	value

	is a value to use in the math operation.

	The type of field (integer or float) is determined from the first letter of fieldname (n, f) or from the value type.

	Example 3.1: Multiply all sigma values by 1.4142:

		-fSigmaI*=1.4142

	Example 3.2: Subtract 1 from all k indices:

		-nK-=1

	

	Form 4

	-reindex=m11,m12,m13,m21,m22,m23,m31,m32,m33

		where

	-reindex=

		indicates that a reindexing matrix follows

	m11,m12,m13,m21,m22,m23,m31,m32,m33

	are 9 elements of a 3x3 matrix that each reflection’s hkl will be multiplied by to get a transformed hkl. The matrix elements must be separated by commas without any whitespace.

			(m11 m12 m13	((h((h’(

			(m21 m22 m23	(((k(=	(k’(

			(m31 m32 m33	((l((l’(

	Example 4.1: Switch h and k and make l equal to -l:

		-reindex=0,1,0,1,0,0,0,0,-1

	The above would be used to change the polarity of a tetragonal or hexagonal spacegroup. The determinant of the matrix should be positive or you will change the handedness of your anomalous data which you almost never want to do.

output_file

	The name of the output d*TREK reflection file. As a safety precaution, this file will not be written if it already exists, instead an error message will be output.

output_file_options

	As above for input_file_options, plus the following:

	-hHEADER

	where the file HEADER contains a valid d*TREK image header that is used for information such as crystal properties (unit cell dimensions and spacegroup). The header is read in and a crystal object created for potential use with the -reduce and -reso options.

	-reduce

	Reduce the hkl's to a single asymmetric unit and add the fields nPackedHKL, nReducedH, nReducedK, nReducedL, nAnomFlag, and nCentPhase. Sort the reflections on field nPackedHKL. Any or all of these fields may be removed by naming them above in output_field_options. The -hHEADER option is a prerequisite to this option. In this case the header file must have valid crystal and spacegroup information.

		-reso

	Add the field fResolution if it does not already exist in the reflection list, then calculate the resolution of each reflection in Ångstroms and place the result in the fResolution field. The �hHEADER option is a prerequisite to this option. In this case the header file must have valid crystal unit cell information.

4.2 Examples� TC "4.2. Examples" \f C \l "2" �

A few simple examples were given in the previous section that described the command line options of dtreflnmerge. This section will give examples of more complicated scenarios.

Example 1

You have collected two scans of 2(oscillations images on an imaging plate system. The first scan consists of 50 images, while the second consists of 20 images. The reflection intensities in the images have all been integrated. You wish to merge the integrated reflection files in order to scale all the data together in a subsequent step with the dtscalemerge program.

Example 1

dtreflnmerge scan1_001.ref -sBatch=S101 \

 scan1_002.ref -sBatch=S102 \

 ...

 scan1_050.ref -sBatch=S150 \

 scan2_001.ref -sBatch=S201 \

 scan2_002.ref -sBatch=S202 \

 ...

 scan2_020.ref -sBatch=S220 \

 scan_1_2.ref -hscan1_001.img -reduce

In this example, the first 50 reflection files from the first scan are named scan1_001.ref, scan1_002.ref, and so on up to scan1_050.ref. The reflection files from the second scan are named scan2_001.ref through scan2_020.ref.

Line 2	Start the program and read in the first input reflection file. Since the input file does not have the sBatch field, add one with a unique name for the reflections in this file. The backslash (\) is just Unix continuation character. On a VMS system this would be a dash (-).

Lines 3-9	These list the other input files and assign unique batch names to them.

Line 10	This gives the output reflection list file, the name of an image file from which a header is read with the crystal spacegroup information and finally the -reduce option to reduce the reflections to an asymmetric unit.

Example 2

You discover there is a problem with the integration of image number 34 from scan 1 and wish to remove its reflections from the merged file of Example 1.

Example 2

dtreflnmerge scan_1_2.ref -sBatch==S134 scan_1_2b.ref

Line 2	Reflections with a sBatch value of S134 are deselected and do not appear in the output file.

Example 3

You discover that reflections in the second scan were mis-indexed partly because you had the b* axis perfectly aligned with the crystal rotation axis. All the k’s are off by +1, so you wish to subtract exactly 1 from all the k values of reflections in the second scan. You need to remerge to repair this.

Example 3

dtreflnmerge scan1_001.ref -sBatch=S101 \

 scan1_002.ref -sBatch=S102 \

 ...

 scan1_050.ref -sBatch=S150 \

 scan1.ref

dtreflnmerge scan2_001.ref -sBatch=S201 \

 scan2_002.ref -sBatch=S202 \

 ...

 scan2_020.ref -sBatch=S220 \

 scan2.ref

dtreflnmerge scan1.ref scan2.ref -nK-=1 \

 scan1_2c.ref -hscan1_001.img -reduce

Lines 2-6	All the reflections from the first scan are merged into a file named scan1.ref.

Lines 7-11	All the reflections from the second scan are merged into a file named scan2.ref.

Lines 12-13	The two merged reflection lists are merged together, but the k’s from the second scan all have 1 subtracted from them. Finally the reflections are reduced to the asymmetric unit.

An alternate way to achieve the same result as the previous example given the result of Example 1 is:

Example 3A

dtreflnmerge scan_1_2.ref -sBatch==S2* \

 scan_1_2.ref -sBatch==S1* -nK-=1 \

 scan1_2c.ref -hscan1_001.img -reduce

Line 2	Exclude all reflections from scan 2 which leaves only reflections from scan 1.

Line 3	Re-read the input reflection list and exclude all reflections from scan 1 which leaves only reflections from scan 2. Subtract 1 from all the k values.

Line 4	Reduce the hkls to the asymmetric unit. Since the -reduce option places the reduced hkls in the fields -nReducedH, -nReducedK, and �nReducedL, the original indices are still intact and thus 1 can be subtracted as on Line 3. The reduced hkls are simply recalculated from the hkls.

Example 4

You decide that the ribosome crystal really did not diffract beyond 1.1 Å resolution even though you collected data to 0.9 Å resolution. You wish to exclude reflections beyond 1.1 Å resolution from the result of the previous example.

Example 4

dtreflnmerge scan1_2c.ref \

 scan1_2d.ref -hscan1_001.img -reso -fResolution<1.1

Line 3	Since the reflection list did not have a fResolution field, you need to add one. Use -hscan1_001.img to get unit cell information. Use -reso to add the fResolution field. Use -fResolution<1.1 to exclude reflections with a resolution beyond 1.1 Å. Remember that -reso is an output file option.

Example 5

You decide that the ribosome crystal really died after the first scan, so that it not diffract beyond 2.0 Å resolution during the second scan. You wish to exclude reflections beyond 2.0 Å resolution from the second scan only.

Example 5

dtreflnmerge scan1_2d.ref -sBatch==2* \

 scan1_2d.ref -sBatch==1* -fResolution<2.0

 scan1_2e.ref

Line 2	Exclude all reflections from scan 2 (keep all scan 1 reflections).

Line 3	Exclude all reflections from scan 1 (leaving only scan 2 reflections), then exclude all reflections with a resolution beyond 2 Å. This works here because the fResolution field already exists in scan1_2d.ref from the previous example.

Line 4	There is no need for the -reso option since the fResolution field already exists.

Here is an alternate way to achieve the same result:

Example 5A

dtreflnmerge scan1_2d.ref -sBatch==2* +fResolution>=2.0 \

 scan1_2e.ref

Line 2	Exclude all reflections from scan 2, then include all reflections within 2 Å resolution from all scans. Since only scan 2 reflections were excluded in the first instance, this has the desired effect.

Example 6

You decide that it would be better to have separate scale factors for reflections in the top and bottom halves of the images. The center pixel is at 4095 (you are using the new MSC 8K by 8K detector). If you use the same files as in Example 1 you might have:

Example 6

dtreflnmerge scan1_001.ref -fObs_pixel0>4095 -sBatch=S101L \

 scan1_001.ref -fObs_pixel0<=4095 -sBatch=S101H \

 ...

 scan2_020.ref -fObs_pixel0>4095 -sBatch=S220L \

 scan2_020.ref -fObs_pixel0<=4095 -sBatch=S220H \

 scan_1_2.ref -hscan1_001.img -reduce

Lines 2 & 5	Each input reflection list will have to be read in twice, once for each half. In this line, reflections with high pixel coordinates are excluded. The batch names end in L to indicate that the reflections come from the low coordinate half.

Lines 3 & 6	Exclude reflections with low pixel coordinates and use batch names ending in H to indicate that the reflections come from the high coordinate half.

Example 7

You have too many fields in the reflection list that you no longer need. You want to eliminate these unneeded fields. In any case, you cannot remove the nH, nK, nL, fIntensity and fSigmaI fields.

Example 7

dtreflnmerge -nPackedHKL -nCentPhase -nAnomFlag \

 -fObs_pixel0 -fObs_pixel1 \

 scan_1_2.ref \

 scan_1_2f.ref

Lines 2-3	Fields you want eliminated from the output reflection list altogether are specified before the first input reflection file.

4.3 Tips� TC "4.3. Tips" \f C \l "2" �

This section describes some things you should know about dtreflnmerge

Reflection lists can have any number of fields and different field types. What happens when you merge reflection lists with fieldnames that do not match? The answer is that the resulting output reflection list contains all the fieldnames of the input reflection lists. Those reflections which did not have an original value for a specific field will get a default value. The default value depends on the field type:

	Type		Default value

	integer		0

	float		-999.00

	string		?

In many cases, you may not care what the default values are since you may have values for those fields recalculated by a subsequent program. In other cases, these extra fields are a nuisance. See Example 7 above on removing unwanted fields.

Reflection lists can also have their fields in different orders. dtreflnmerge takes into account any differences in the order of the fields when merging reflection lists. This can be time-consuming though.

Hint: Merging reflection lists with different fields is very time-consuming. Try to eliminate unneeded fields early on in any merging process. Use an intermediate reflection list if necessary.

It is also very time-consuming to add new fields to a reflection list. It is faster to add fields to smaller lists and merge them than it is to merge them and then add fields.

Hint: Add all required fields early on in any merging process. Use an intermediate reflection list if necessary.

There are some steps we can take to make the dtscalemerge (not shown) faster. You are aware that dtscalemerge adds the fields nBatchIndex and fSTLsq to the reflection list it uses if they are not already present. dtscalemerge also does not assume the reflections are reduced to an asymmetric unit and sorted, so it performs this step. If the fields added by the -reduce option are not present, they are added at this time which can take quite some time for a large list. If you have to run dtscalemerge several times to be satisfied with the results, then you might end up doing this often. Thus is it a good idea to add these fields to the input reflection list before running dtscalemerge.

If we revisit Example 1 in the previous section and change it to be faster for ultimate purpose, we end up with the following:

Example 1 FASTER

dtreflnmerge scan1_001.ref s101.ref -sBatch=S101 \

 -nBatchIndex=0 -fSTLsq=0.0 -hscan1_001.img \

 -reso -reduce

dtreflnmerge scan1_002.ref s102.ref -sBatch=S102 \

 -nBatchIndex=0 -fSTLsq=0.0 -hscan1_001.img \

 -reso -reduce

#...

Do the above for all 70 integrated reflection lists just once

dtreflnmerge s101.ref s102.ref s103.ref \

 ... s220.ref \

 scan_1_2.ref

Lines 2-4	An input list is read in. Fields that will be used by a subsequent dtscalemerge run are added explicitly by -nBatchIndex and -fSTLsq. Also fields are implicitly added with the -reso and -reduce output file options.

Lines 5-7	The operations of lines 2-4 are repeated for each original input reflection list.

Lines 11-13	The intermediate reflection lists are all merged together. Since the �reduce option is not used, the output file scan_1_2.ref is not sorted on hkl, but rather on the order of the input reflection lists.

4.4 Incorrect examples� TC "4.4. Incorrect examples" \f C \l "2" �

Below are simple examples of incorrect syntax.

-fIntensity>3*fSigmaI	WRONG! The right-hand side must be a simple number. Use -fIntensity/fSigmaI>3 instead.

-fIntensity=*5.0		WRONG! Use *= instead.

-fIntensity==100*		WRONG! 100* is not a valid number.

dtreflnmerge scan1_001.ref -reduce -fObs_pixel0>4095 -sBatch=S101L \

				scan_1_2.ref -hscan1_001.img

				WRONG! -reduce is not an input file option.

	

dtreflnmerge scan1_001.ref -fObs_pixel0>4095 -sBatch=S101L \

				scan_1_2.ref -reduce -hscan1_001.img

	WRONG! -reduce needs to come after the �hscan1_001.img option.

dtreflnmerge scan1_001.ref -fObs_pixel0>4095 -sBatch=S101L \

				scan_1_2.ref -hscan1_001.img -nPackedHKL

	WRONG! -nPackedHKL as shown here needs a comparison or assignment, it cannot stand alone in this position.

-nH=nReducedH	WRONG! The value on the right-hand side cannot contain be a function of a fieldname, it must be a number or string.

-sBatch==J1*1	Not wrong, but * is not a wildcard here since it is not the last character of the right-hand side

�
Appendix A Reflection list fieldnames� TC "Appendix A Reflection list fieldnames"\f C \l "1" �

Below is a list of fieldnames used in various d*TREK programs. Remember: reflection lists are not required to use only these fieldnames.

Integer fieldnames

nH			Miller h index, range -511 <= h <= 511

nK			Miller k index, range -511 <= k <= 511

nL			Miller l index, range -1023 <= l <= 1023

nPackedHKL		Packed hkl of a reflection: [(h+512) << 21] + [(k + 512) << 11] + l + 1024

nReducedH		Miller h index when nH, nK, nL are reduced to an asymmetric unit

nReducedK		Miller k index when nH, nK, nL are reduced to an asymmetric unit

nReducedL		Miller l index when nH, nK, nL are reduced to an asymmetric unit

nAnomFlag		+1 when hkl is an F+, -1 when hkl is a F- (even if centric)

nCentPhase	0 when acentric, -1 when systematically absent, >0 phase is restricted to 	nCentPhase (12 ((radians and that plus (radians.

nDetector_number	The detector number of a reflection in a multi-detector system

nNonunf_flag		The non-uniformity type to apply to the reflection

nReflnNum1		Reflection number for difference vector calculation

nReflnNum2		Reflection number for difference vector calculation

nOriginalReflnNum	

nFrequency		Frequency of a difference vector

Floating point fieldnames

fIntensity		Estimated intensity, often corrected for all factors,

fSigmaI			Estimated standard deviation of the intensity

fObs_pixel0		Observed detector coordinate in the fast varying (i.e. first) direction

fObs_pixel1		Observed detector coordinate in the slow varying (i.e. second) direction

fObs_rot_mid		Observed rotation midpoint, may be in images or in degrees

fObs_rot_end		Observed rotation endpoint, may be in images or in degrees

fObs_rot_width		Observed rotation width, may be in images or in degrees

fObs_img_mid		Observed rotation midpoint,in images

fObs_Xmm		Observed X millimeter coordinate

fObs_Ymm		Observed Y millimeter coordinate

fCalc_pixel0		Calculated detector coordinate in the fast varying (i.e. first) direction

fCalc_pixel1		Calculated detector coordinate in the slow varying (i.e. slow) direction

fCalc_Xmm		Calculated X millimeter coordinate

fCalc_Ymm		Calculated Y millimeter coordinate

fCalc_rot_start		Calculated rotation angle start, in degrees

fCalc_rot_mid		Calculated rotation angle mid point or centroid, in degrees

fCalc_rot_end		Calculated rotation angle end point, in degrees

fCalc_rot_width		Calculated rotation angle width, in degrees

fCalc_partiality		Calculated partiality, as a fraction of 1

fResolution		Calculated resolution in Ångstroms

fRecip0			Reciprocal space coordinate in Å-1

fRecip1			Reciprocal space coordinate in Å-1

fRecip2			Reciprocal space coordinate in Å-1

fRecipLength		Length of the reciprocal space vector |d*|

fFloatH			Miller index h as floating point

fFloatK			Miller index k as floating point

fFloatL			Miller index l as floating point

fCalc_polarz		Calculated polarization factor

fCalc_lorentz		Calculated Lorentz factor

fCalc_oblique		Calculated oblique incidence factor

fDeltaPx0		Difference between two reflection first pixel coordinates

fDeltaPx1		Difference between two reflection second pixel coordinates

fDeltaRot		Difference between two reflection rotation midpoint coordinates

String fieldnames

sRejectString		String describing rejection status

sBatch			String giving batch name of reflection

d*TREK dtreflnmerge		Revision 00

Molecular Structure Corporation		February 16, 1996

Document No. SBC01-????-00		Page � PAGE �18� of 18

