Security – Secure Desktop Access to Remote Resources

Mary R. Thompson2 , Gregor von Laszewski1, Doug Engert1,

Keith Jackson2, Srilekha S. Mudumbai2 and Thomasz Haupt3

Draft: November 1998, comments: gregor@mcs.anl.gov

1Argonne National Laboratory, Argonne, IL 60439

2Lawrence Berkeley National Laboratory, Berkeley, CA 94720

3Syracuse University, Syracuse, N.Y. 40319

Abstract

This document is based on discussions of the security-working group at the “First Workshop for Desktop Access to Remote Resources” and follow up meetings The working group concentrated on the issues related to providing services that enable secure desktop access to remote resources. We identified specific requirements based on the unique distributed environment. This paper presents the security issues and requirements that the group identified and presents a brief survey of existing technology that may help provide solutions.

1 Introduction

Today’s computing infrastructure encompasses a large variety of different hardware and software components. The typical user has difficulties mastering the various interfaces to the heterogeneous resources. Thus, it is desirable to develop a framework that simplifies the access to remote resources. Formally, an architecture should be defined to allow the integration of many different services accessing these resources. An important step in this direction is to identify base requirements for secure remote access in order to build a common extensible API. This API in turn will enable the building of sophisticated and reusable tools around the services. The workshop attendees identified a potential list of such services.

1.1 Goals

The ongoing goal of this working group is to specify the services necessary to provide secure desktop access to remote resources. These services must support large-scale distributed applications. Such applications have unique requirements that provide a significant challenge. The design of the services should be open and expandable to encompass the diverse security infrastructure in place at different sites. Security services include authentication, access control, message integrity and confidentiality.

1.2 Problem Scope

We intend to provide remote access to a large range of resources including:

· compute resources (PC’s, workstations, networks of workstations, supercomputers, and metacomputers),

· data resources (distributed databases, directories, data services), and

· compute services (specialized problem solving and visualization environments).

A remote resource is defined as one that is either physically or logically separated from the user.

Examples of environments using remote resources are large-scale distributed computing environments, on-line instruments and mass storage systems. We start the paper by identifying some unique characteristics and requirements of environments utilizing remote resources with respect to the security infrastructure.

1.3 Restrictions

Since resource policies are often already in place at many sites, the security services should be designed to allow easy integration of various security policies and methods. Attempts to change already established resource policies are beyond the scope of this effort. Nevertheless, recommendations to sites that do not have rigid remote-access policies are available; for example Globus for authentication and Akenti for access control. We are also not addressing issues of software or hardware licensing in this research effort.

2 Security Aspects

2.1 Common security aspects

Basic security services, as depicted in Figure 1, must be part of the infrastructure. The “Authentication Service” authenticates a user to the system. The “Access Control Service” compares this authenticated identity with the set of requirements for the resource, to determine access to the resource. “Data or Message Integrity Services” are used to verify that data has not been changed accidentally or maliciously during message transmission. This can be accomplished by, for example, including a message hash with the data. A “Data or Message Confidentiality Service” ensures that no one other than the intended recipient can read the data. Normally this is accomplished by encrypting the data.

We have also identified a number of common high level tasks relating to security, which must be supported within the framework. For the user it is important to be able to authenticate to the system, hopefully with a single sign on service. The owners of the resources are mainly concerned with controlling access to their resources. Both user and resource owners have significant interest in exchanging data between resources over a secure link. In many cases it is necessary to restrict the ability of a users program on a remote machine to access a subset of available services. It must be possible for the resource owner to define such access restrictions.

[image: image1.wmf]Secure Link

Access Control

Single Sign-on

Secure Execution

Authentication

Execution and

Communication

Delegation

Figure 1: Security abstractions for a desktop access to remote resources.

2.2 Security aspects specific to large-scale distributed computing environments

While the services and requirements listed in the previous section are also common to traditional compute systems, we would like to focus in the following sections on the characteristics of a large-scale distributed environment. These characteristics include:

· a large and dynamic user population,

· a large and dynamic pool of resources,

· a dynamic need for resources by the users,

· various communication protocols between the communicating processes,

· various security models on different sites, e.g. Kerberos and public key infrastructure (PKI),

· different security domains within a security mode. E.g. different cells for Kerberos, different realms for DCE and different Certificate Authorities (CAs) for PKI,

· different identifications (accounts) for users on different systems,

· export restrictions on security codes .

During our discussions we identified examples that illustrate some problems related to security in large-scale distributed computing environments. These observations/examples influence the design of the security services.

We noticed that the security policies are often complicated and site or resource specific. In addition, sites might have strict and inflexible security policies. At times it is not allowed to transfer data from one domain to another domain because either the policy does not allow it or technology does not exist (e.g. no common encryption methods). Secure sites sometimes let data get in, but not out, thus making it difficult to return results to the desktop. To define security policies we need a mechanism to describe who trusts whom and which resources should be protected.

2.3 Security aspects specific to the user community

The user community must be strongly considered when designing a security infrastructure. Many users are unwilling to deal with obtrusive security procedures, but at the same time expect a reasonable level of security. Hence, it is of utmost importance to present the security mechanisms to the users in an easy and mostly transparent way. A minimum level of understanding by users is necessary, so that they can specify their own security requirements and understand what security guarantees or risks the resource sites are providing. Thus, it is necessary that part of the infrastructure for providing a secure desktop access must be an educational service providing the necessary explanations and guidance to develop and use programs to enable the necessary secure service. Part of this educational service should be a self-guided help service allowing the user to obtain information about the security policies and mechanisms.

An important feature in simplifying the user access is hiding different security authentication mechanisms behind a uniform interface. An example of such a service is the previously mentioned single sign-on to a combination of resources.

3 Requirements

The security requirements of users and resource providers are, quite naturally, different from one another. Sometimes these requirements are motivated by conflicting goals and can oppose each other. Hence, it is not easy to determine a priori a solution to satisfy the different goals and requirements.

Thus, we analyze in this section the basic security requirements in more detail (authentication, access control, message integrity and administrative requirements).

3.1 Authentication Requirements

We identified the following issues applying to authentication:

· The resource provider/server requires that users be authenticated.

· Users desire easy authentication to servers.

· Users only want to authenticate once. But it may be necessary to be authenticated to several different domains and for a long period of time. These problems can be addressed by a delegation of your identity to a proxy.

· Users require that servers be authenticated (the user want to get access to a trusted resource).

· Collaborating users require that their peers be authenticated.

· Collaborating servers may require the peer servers to be authenticated.

3.2 Access Control Requirements

The access control service needs to provide the following services:

· The resource owners (stakeholders) need to be able to easily define the access control requirements (Use conditions).

· Stakeholders need a service to easily see what constraints are in place for a given resource.

· The resource servers need to be able to enforce the stakeholders use conditions, thus if the use conditions are distributed, the server must be able to find them reliably.

· The users need a service that will preview a computation, report whether it will succeed or fail, and if it will fail, inform the user what credentials he is missing.

3.3 Message integrity and confidentiality (Datatransfer) Requirements
Message transfer services need to address the following issues regarding message integrity and confidentiality:

· The user needs to specify the level of integrity and confidentiality for data transfer.

· Data stakeholders need to specify the level of integrity and confidentiality required for the data to be included in a message. In practice this may only be possible by means of restricting data access to users that he trusts to be careful of his data.

· Both users and servers need a service, which can answer the questions :

· Can data transferred from here to there without violating security?

· Can I send secure messages? (This includes if it is technically or politically possible.)

· Servers need to be able to move processes (=data) from one machine to another in secure fashion .

· Signed code (applets and programs) needs to be supported.

Administration requirements

We identified the following requirements unique to the administration of a secure environment:

· Stakeholders need a simple GUI to create and impose use conditions on their remote resources .

· Stakeholders and resource server administrators need a service, which gives a list of users who have access to the resource.

· A simple interface and policy for adding new users to the distributed environment is required.

3.4 Recommendations

The working group came up the following general recommendations for the security aspects of the API for desktop access to remote resources:

· Recognize that heterogeneous security environments will have to coexist.

· Suggest that we specify high-level security requirements that can be mapped onto existing environments.

· Develop tools that will allow specification of security policies in an easy fashion.

· Check security requirements as part of resource discovery.

· Utilize existing technologies (as in section 4) as much as possible.

4 Technology Evaluation

4.1 Java

Java JDK1.2 defines an extensive API for encryption, digest and signature of messages. It also defines a key and certificate management API and an access control policy API. This API is designed to allow for different implementations of the defined classes (i.e. by different “providers”). The main purpose of the Java Security model is to allow the secure and trusted execution of Java applications and applets that may have been loaded dynamically from remote hosts. JDK 1.2 extended the restricted execution environment (sandbox) provided by browsers for applets to Java applications. If a security manager is specified when running an application, it will intercept a large number of execution steps, such as file read/write and inter-process communication, and check against a policy file to see if the action is allowed.

The policy file can be either system wide (from the JavaHome area) or specific to user who is executing the code. It specifies the allowed actions, e.g. write to files in a given directory, allowed for code signed by a specified user and/or loaded from a specified URL. The code to be executed should be in a signed jar file. Java provides interfaces for signing files, and managing the certificates and keys on both the code sending and receiving sites. Since there is considerable flexibility in the policy files (one per system or one per user), wild carding allowed for users and originating locations and resources accessed, it should be possible to conveniently control the execution of imported Java code. It is harder to apply these mechanisms to the case where a remote user contacts a server running on the host machine and requests access to resources. It might be possible for the server to spawn a child application that appeared to come from the user, just as server sometimes change their userids to run with the restrictions of remote user.

Java also lets you write you own Security manager class which might allow a more resource centric view of access control.

The fact that JDK1.2 has specified a full suite of security interfaces and that there are several providers of these classes, including the iSaSiLk package from the University of Graz, makes writing secure code in Java much easier than it was a few months ago.

4.2 Browsers

The browsers will let a user request a personal certificate, save it in his browser database and export it as a pk12 standard format file. With the proper security preferences set, a user need only type a passphrase once per Netscape session to effect a one-time login to any web-server that requires an X.509 certificate. Browsers allow a user to manage several certificates and chose the one to use for each secure connection.

The browsers recognize signed applets and allow those applets more privileges than unsigned ones. The browser will tell the user who signed the applet and ask for permission before executing otherwise forbidden operations.

 Both Netscape and IE browsers provide PKI key management, client authentication and restricted execution of Java applet code. At the moment there are incompatibilities between IE and Netscape that can be overcome with a number of tricks. One serious failing of IE on Windows is that it puts private keys in the registry by default where any user of the machine can access them. It is possible for a knowledgeable user to restrict an identity to just one user.

4.3 SSH - Secure Shell

This is a set of programs available as free-ware on Unix platforms and as inexpensive (about $50) software products for Windows and MacOS. Its primary function is to replace the Unix telnet, rlogin, and rcp commands with ones in which any data transmitted across the network is encrypted. Since the current major cause of breakins has been passwords sniffed off the Internet, this software has been adopted by many sites as the only way to obtain remote access to their machines. SSH does its own key generation and management, keeping keys in a "known" directory (on Unix $HOME/.ssh and/or /etc/ssh__known_hosts. The keys can be associated with machines or users. The trust relations are between machines or users. Just like in rlogin, a user must have access to an account on the remote machine. If a user/machine's public key is installed on a remote machine, the login process becomes more automatic. But even in the simplest case where the server runs the ssh daemon and the client just runs the client, the logins are encrypted.

SSH provides a simple, effective and platform-independent way for users to remotely login to server machines in a secure manner. It does not attempt to interact with other key management systems. It only provides a single login to multiple machines if the user ids on all the machines are identical and the machines have been setup to trust the client's machine.

4.4 Globus

Globus provides a limited delegation of identity to proxy mechanism, which facilitates a single login to be used for authentication to multiple domains, and over an extended period of time. In addition, it provides a mapping mechanism to go from a x.509 identity to local account ids on server machines. Globus defines a Resource Definition Language (RSL) and a discovery procedure, which may be extensible to define and test security requirements. A GSS application implemented over SSLeay is included in the distribution that can be used to establish authenticated connections between clients and servers.

4.5 Akenti

Akenti provides an access control mechanism based on signed use-condition certificates and user attribute certificates all of which may be stored remotely from the resources. It provides a policy engine that the resource server can call to find and analyze all the remote certificates. It also includes a GUI for creating the use and attribute certificates.

4.6 Condor

Provides requirements description language (Class ads) and a matching engine that may be extensible for use in defining and matching security requirements.

5 Annotated References

5.1 Books that contain introductory material

Applied Cryptography, Bruce Schneier, Second Ed. John Wiley & Sons, Inc.1996

This is the current bible for people trying to implement or understand implementations of cryptographic algorithms. However, its excellent organization allows a novice to get a good introduction to the issues and terms used in secure communications. Contains a section briefly describing most of the current secure communication implementations, including Kerberos, PKCS (RSA's public-key standards), PEM (Privacy Enhanced Mail), and PGP (Pretty Good Privacy). It includes a bibliography of 1653 entries, so whatever you don't find here, you will find a reference to.
Bruce Schneier Crypto Links, http://www.counterpane.com,

“Collections of Links” contains a list of links to on-line security sources. The "Bibliographies" links to annotated on-line bibliographies and collections of papers.

Web Security & Commerce, Simon Garfinkel with Gene Spafford, O'Reilly & Associates, 1997

Contains chapters on Digital Certificates, cryptography basics, SSL and TLS. A lot of the emphasis is on security and certificate management through your Web browser and how to secure a Web server.

5.2 Public Key References

An Overview of the PKCS Standards http://www.rsa.com/rsalabs/pubs/PKCS/, Under Documents " Section 2: "Background information"

Includes definitions of public-private key cryptography, digital signatures, message digests and secret key cryptography. Section 3 explains how to do digital signatures, digital enveloping, digital certification and key exchange.

RSA Data Security, Inc. is the company that developed and patented the Rivest, Shamir and Adleman public key encryption algorithm.

IETF working group on Public-Key Infrastructure (X.509) (pkix) http://www.ietf.org/html.charters/pkix-charter.html,
Public Key Infrastructure PKIX Roadmap

http://www.ietf.org/internet-drafts/draft-ietf-pkix-roadmap-00.txt,

This document is an overview of all the standards that this working group is attempting to define. Section 2 gives an overview of the terminology and section 3 gives a brief description of how PKI systems are used to effect authentication, non-repudiation, and confidentiality.

5.3 X.509 Identity Certificate references

X.509 is a standard for Identity Certificates, which are the documents that a Certificate Authority (CA) issues. They basically contain the name of the issuer (the CA), the Distinguished Name of the subject, a validity period, the signature algorithm that is used and the public key of the subject and the signature of the CA. There can be a bunch of extensions as defined by version 3 (v3) of the standard. See http://www-itg.lbl.gov/Akenti/docs/IdentityCert.html for an example of an Identity Certificate issued by the Netscape CA.

Internet X.509 Public Key Infrastructure Certificate and CRL Profile. R. Housley, W. Ford, W. Polk, D. Solo http://www.ietf.org/internet-drafts/draft-ietf-pkix-ipki-part1-11.txt
Defines the X.509 v3 certificate and X.509 v2 CRL (Certificate Revocation List)

5.4 LDAP (Lightweight Directory Access Protocol)

An LDAP server is used as a Registration Agent (RA) by the Netscape CA. All valid certificates are entered into an associated LDAP server, and are removed when then are revoked. Thus one can check if a certificate has been revoked by looking it up in the CA's LDAP server. If it is not found, it is assumed to have been revoked.

LDAP - Programming Directory-Enabled Application with Lightweight Directory Access Protocol, Timothy A. Howes, Mark C. Smith, McMillian Technical Publishing, Indianapolis, In. 1997

Chapter 3 describes the LDAP models, i.e., what LPAP is used for. Most of the rest of the book is on how to program to the LDAP API.

University of Michigan's LDAP documentation page, http://www.umich.edu/~dirsvcs/ldap/doc/:

From here you can link to RFC-1777 Lightweight Directory Access Protocol http://www.umich.edu/~dirsvcs/ldap/doc/rfc/rfc1777.txt along with a lot of related RFC's. There are also links to some papers about the University of Michigan implementation of the LDAP protocol.

5.5 SSL protocol

Netscape defined the Secure Socket Layer protocol as an open standard. It has now been submitted to the IETF as an Internet draft. It runs on top of the TCP protocol and implements a secure handshake protocol which passes Identity certificates from the server to the client, and optionally from the client to the server. It uses the public keys to create a symmetric session key that is used to encrypt subsequent messages over the TCP socket. It can use a variety of both public and private key encryption algorithms.

Netscape version of the protocol http://www.netscape.com/newsref/std/SSL.html
The IETF Transport Layer Security working group page http://www.ietf.org/html.charters/tls-charter.html
 (TLS is the IETF name for the SSL protocol

The IETF Internet draft of the protocol http://www.ietf.org/internet-drafts/draft-ietf-tls-protocol
SSLeay http://www.psy.uq.oz.au/~ftp/Crypto
Download site for the freeware implementation of SSL by Eric Young

5.6 Kerberos

Kerberos is an authentication service developed at MIT for project Athena. Kerberos is a trusted third party, which will provide an identity token with a limited lifetime to a user who it knows and who provides the correct password. This identity token is often used by AFS or DFS file systems to provide access to files.

“Kerberos: An Authentication Service for Computer Networks”, B.C. Neuman and T. Ts’o IEEE Communications Magazine, v.32, n.9, Sep 1994, pp. 33-38. Also available from http://nii.isi.edu/publications/kerberos-neuman-tso.html
According to Bruce Schneier (see ref 1) "This is the best overview of Kerberos”

MIT’s Kerberos Web page http://web.mit.edu/kerberos/www/papers.html

5.7 Security for the Computational Grid

“A Security Architecture for Computational Grids”, I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. Fifth ACM Conference on Computer and Communications Security, 1998.

This paper analyses the security requirements of large scale distributed (grid) computing and develops a security policy and a corresponding –architecture. It is used within the Globus metacomputing toolkit.

1
2
6

_971588428.ppt

Secure Link

Access Control

Authentication

Execution and

Communication

Delegation

Single Sign-on

Secure Execution

