Why Computer Science is Fundamental to Almost Everything

Ian Foster

Computation Institute Argonne National Lab & University of Chicago

"Applied computer science is now playing the role that mathematics did from the 17th through the 20th centuries: providing an orderly, formal framework & exploratory apparatus for other sciences." —George Djorgovski

The Big Questions

Future of the planet

Nature of the universe

Life & death

Consciousness 3

The Little Questions

- Friends
- Sales
- Entertainment
- Spelling
- Parking

How Do We Answer Them?

Type Ia Supernova Explosion: Gravitationally Confined Detonation (Calder, Plewa, Vladimirova, Lamb, and Truran, 2004)

IBM BG/L Computer

Challenges Include ...

- Multi-scale, multi-physics modeling
 - Adaptive mesh refinement
 - Component architectures
- Scaling to 100K+ processors
 - Scalable parallel libraries
 - Parallel operating systems
- Understand & validating results
 - Visualization, data mining
 - Quantifying uncertainty

How Much Data?

- In 2006:
 - The world created 161 exabytes (1.6 x 10²⁰ bytes) of digital data
 - There were one billion devices able to capture digital images
- By 2010:
 - Annual data output will reach one zettabyte (1 x 10²¹ bytes)

Source: IDC, 2007

Sources: Lesk, Berkeley SIMS, Landauer, EMC

YEAR

A Data Deluge

	A Brain is a Lot of Data! (Mark Ellisman, UCSD)					
	Volui GB = Gigat	me sizes brain =	s by resolution 1500 cm ³	ution -		
	TB = Terab PB = Petab	$y_{te} = 10^{12}$ $y_{te} = 10^{15}$				
	voxel size 	B&W (1 B/p) 1.5 KB	High res (2 B/p) 3 KB	4.5 KB		
And comparisons must be	mm	1.5 MB	3 MB	4.5 MB		

made among many

We need to get to one micron to know location of every cell. We are starting to get to 10 microns

10 µm

Um

1.5 TB

1.5 PB

3 TB

3 PB

4.5 TB

4.5 PB

Images courtesy Mark Ellisman, UCSD

- Understanding increases **far** more slowly
- Methodological bottlenecks?
 - ➔ Improved technology
- Human limitations?
 - ➔ AI-assisted discovery

- Data ingest
- Managing a petabyte
- Common schema
- How to organize it?
- How to *re*organize it?

Jim Gray & Alex Szalay

- Data query & visualization
- Support/training
- Performance: interactivity, scale in data size, analysis complexity, demand

Evidence Integration: Genetics & Disease Susceptibility

GeneWays as an Info-Grinder

Data Analysis gets Fuzzy

Global statistics?

♦ Correlation functions: N²

Likelihood techniques: N³

Best we can do is N or maybe N logN

(scale approximate)₂₃

Growth of Sequences and Annotations since 1982

Growth of sequences and annotations since 1982

Folker Meyer, Genome Sequencing vs. Moore's Law: Cyber Challenges for the Next Decade, **CTWatch**, August 2006.

Production Science: Biology

Public PUMA Knowledge Base

Information about proteins analyzed against ~2 million gene sequences

i23499780.jml REF_trigr IBRADDL3	91 16080253 91 23098409 91 1488 3718 7 91 52005400 91 1488 4015 91 30348891 91 96552221 91 27358608 91 1259 7924 91 46 36 3318	ref NP_331080.1 ref NP_631875.1 ref ZP_00234182.1 gb A4425342.1 ref ZP_00317908.1 gb A44593339.1 gb A44593339.1 gb A44593839.2 ref ZP_00226079.1	44.27 253 43.48 253 44.92 256 44.92 256 44.75 257 44.49 245 39.53 253 40.64 251 43.03 251 43.03 251 46.70 182 39.58 240	131 1 133 2 125 2 136 2 134 1 138 3 138 1 138 1 130 4 96 1 136 2	15 2 16 2 14 2 15 13 3 18 17 4 18 5 2 14	257 8 256 5 256 7 258 3 257 5 257 5 256 10 256 11 256 11 243 5 253 6	2603.7 2573.8 2591.1 2561.9 2476.1 2552.0 2602.7 2602.5 1856.8 2361.8	e e e e -43 177.6 e -43 177.2 e -41 170.6 e -39 162.9 e -36 154.9
REF_tigr BRA0013 REF_tigr BRA0013 REF_tigr BRA0013 REF_tigr BRA0013 REF_tigr BRA0013 REF_tigr BRA0013	ģi gi gi gi gi	39933731 48782600 41407534 48851585 15966306 17548526	ref NP ref 2P ref NP ref 2P ref NP	_946007 _002791 _960370 _003057 _386659 _521866	7.1 106.1 0.1 793.1 0.1 0.1	34.90 35.92 36.09 32.39 36.50 36.36	255 245 266 247 263 264	e-33 142.5 e-32 141.4 e-32 140.2 e-32 139.0 e-32 139.0 e-32 139.0 e-32 139.0 e-31 137.1 e-30 134.3 e-30 134.4 e-30 134.4 e-30 134.4
123493780197118FF_T19718840013 12349378019718FF_T19718840013 12349378019718FF_T19718840013	91 51891730 91 1458819 91 2509334 91 21220953 91 41220953 91 41405812 91 141405812 91 141405812 91 23470090 91 24935279 91 4847655 91 28451510 91 2737873 91 1,708836 91 1,708836 91 35584148 91 33584148	ref vp_074421.1 ref wp_73338.1 ref wp_73338.1 ref wp_73337.1 ref wp_5373.1 ref wp_52873.1 ref wp_52873.1 ref wp_52873.1 ref wp_5373.1 ref wp_7332.1 ref wp_7332.1 ref wp_7373.1 ref wp_831732.1	38.87 247 33.87 248 35.20 257 33.62 254 33.61 254 35.60 255 35.60 255 35.60 256 35.60 255 35.60 256 36.61 257 36.05 258 36.25 251 36.25 251 36.25 251 34.17 240 34.17 240	138 7 147 4 138 6 153 3 149 5 149 5 145 4 145 4 145 4 145 9 145 4 145 9 142 4 143 3 143 4 143 5 148 5	18 3 13 4 15 5 12 2 16 12 12 4 12 4 12 4 12 4 12 4 12 4 12 5 12 12 12 12 12 12 12 13 14 14 12 18 18	256 1 253 3 256 6 255 5 253 2 266 6 253 3 257 4 257 4 257 4 257 4 256 6 256 6 256 6	2403.4 2404.4 2465.7 2545.7 2485.7 2485.7 2499.8 2499.8 2499.8 2499.8 2499.8 2431.3 2491.3 2491.3 2491.3 2491.7 2363.7 2363.7	e-30 133.7 e-30 133.9 e-30 132.9 e-30 132.9 e-30 132.1 e-30 132.1 e-30 132.1 e-30 132.1 e-29 131.7 e-29 131.7 e-29 131.7 e-29 131.7 e-29 130.2

	🗐 PUMA2: 16124111 - Mi	icrosoft Internet Explorer		- ×					
	Eile Edit View Favorites	Iools Help Google -	💏 Search Web 👻 🌸 😰 😻 🛃 846 blocked 🔚 AutoFill 🛛 Notions 🥒	.					
	🕒 Back 🝷 🕥 🕤 💌	💈 🏠 🔎 Search trav	avorites 🤣 😥 🖳 🛄 🖏 🎗	•					
	Address 🗃 http://compbio.mcs.anl.gov/puma2/cgi-bin/prote 🕤 🄁 Go Links 🖅 Yahoo! 🎒 CNN.com 🎒 netmio.com 💰 Yahoo! ne spañol 👸 Windows								
	Bioinformatics Group MCS, Argonne PUMA2 Evolutionary Analysis of Metabolism Login								
		>puma2 Hom	me Search Organism Models General Functional Overview Protein Families About puna2						
	NCBI pi number 16124111 - pr NCBI related proteins TYEEMEL PIR-INREF NCBI Accession Source Organism Taxon ID	etities eutotrinsponter probin Mersi 15981892, 25511357 Q82A36 NF00798375 CAC93445.1 Yersinia pestis CO92 214092	iniz pesto] Putative autotransporter protein	Ē					
	Chromosomal Comparison		< 1 e^-100 > 1						
	The SEED	Sequence length (1070 aa) 133 267 401 535 668 802 936 1070							
	Similarity Global	INTERPRO							
	BLAST vs. nr	IPR004899	Pertactin domain						
	Fasta3∨s. UniProt	IPR005546	Autotransporter beta-domain						
	Blocks-Blast	198000313		01					
	PhyloBlast	BLOCKS							
	BLink	IPB004899	Pertactin domain						
	Similarity Local	BLAST vs. m							
	InterPro	10945158	YapE protein [Yersinia pestis]	inia r					
	Blocks	33599810	autotransporter [Bordetella bronchise]	otica					
	DART	33595429 33595157	autotransporter [Bordeteila parapertu autotransporter [Bordeteila parapertu	ssis : ssis :					
	Protein families	33599439 16119581	autotransporter [Bordetella bronchise]	otica řaciel					
	COGs	17938938	autotransporter protein [Agrobacteriu	n tur Toba					
e	TIGRFAMs	34496292 23500862 33599442	adout any porter "boil occurse per conserved hypothetical protein [Chronouter membrane autortansporter] outer membrane autortansporter Borderella hronobies	noba cella					

Back Office Analysis on Grid

Millions of BLAST, BLOCKS, etc., on OSG and TeraGrid

Natalia Maltsev et al., http://compbio.mcs.anl.gov/puma2

e, but with errors on par

Integrated View of Simulation, Experiment, & Bioinformatics

*Simulation Information Management System +Laboratory Information Management System

eScience

Computational science

+ Informatics

= **eScience** [John Taylor, UK EPSRC]

 "Large-scale science carried out through distributed collaborations—often leveraging access to large-scale data & computing"

Seismic Hazard Analysis

Defn: Max. intensity of shaking expected at a site during a fixed time interval

Example: National seismic hazard maps

- Intensity
 measure: peak
 ground
 acceleration
- Interval: 50 yrs
- Probability of exceedance: 2%

T. Jordan et al., Southern California Earthquake Center ³¹

Seismic Hazard Analysis

T. Jordan et al., Southern California Earthquake Center 32

FSM = Fault System Model RDM = Rupture Dynamics Model

2

AWP = Anelastic Wave Propagation SRM = Site Response Model

Access to National Cyberinfrastructure

CFK11

Slide 34

CFK11 This shows only pathway two, where the other pathways involved as well.

Do you have a visualization of the output of wone of these runs?

Are the CPU pictures accurate to what you ran? Carl Kesselman, 9/27/2004

cancer Biomedical

Informatics Grid

caBIG

eScience Challenges

- Simulate complex, multi-component systems
- Evaluate accuracy of such simulations
- Integrate evidence to draw conclusions
- Evaluate strength of conclusions
- Automate "experimental" workflows
- Document basis for conclusions (provenance)
- Allow these problems to be tackled by distributed teams using federated resources

What is Fundamental?

First two, at least © CS

Computer Science: A Narrow or Broad View?

- Narrow
 - CS is programming
 - → Other aspects of information are the domain of "statistics," "bioinformatics", etc., etc.
- Broad
 - CS is "the systematic study of algorithmic processes that describe and transform information, their theory, analysis, design, efficiency, implementation, and application" (Denning et al., CACM, 1989)
 - ➔ Statistics & bioinformatics are subdisciplines of computer science

Effective eScience **requires** PQ research models

***Applied computer science** is now playing the role that mathematics did from the 17th through the 20th centuries: providing an orderly, formal framework & exploratory apparatus for other sciences." —George Djorgovski

"... the branch of computer science that concerns itself with the application of computing knowledge to other domains"?

Computation Institute

A joint institute of Argonne and the University of Chicago, focused on advancing **system-level science**

Solutions to many grand challenges facing science and society today are dependent upon the analysis and understanding of entire systems, not just individual components. They require not reductionist approaches but the synthesis of knowledge from multiple levels of a system, whether biological, physical, or social (or all three).

http://www.ci.uchicago.edu

Thanks!

- foster@mcs.anl.gov
- http://www.ci.uchicago.edu
- http://ianfoster.typepad.com

In Memoriam: Jim Gray (1944-2007?)

Turing Award, 1998

"for seminal contributions to database & transaction processing and technical leadership in system implementation"

